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INTRODUCTION 

Exosomes, small membrane vesicles (30-100 nm) with  
a cup-shaped morphology, are of endosomal origin. Exo-
somes represent the smallest of the extracellular vesicles 
(EVs), which are released by cells and differentiated with 
regards to size into large, medium and small [1] (Figure 1).  
Their formation begins with the invagination of the cell 
membrane to form endosomes, followed by the creation 
of multivesicular bodies (MVBs) (Figure 2). The fusion 
of MVBs with the plasma membrane releases the internal 
vesicles, called exosomes [2-4]. Studies indicate that 
exosomes can be released by nearly all living cells in the 
body, including stem cells, platelets, cardiomyocytes, endo-
thelial cells, dendritic cells, B lymphocytes, and tumor cell 
lines, among others [5-10]. Exosomes contain cargo, includ-
ing functional microRNAs/RNAs, proteins and lipids, which 
they deliver to other cells, providing means for a new way 
of cell-to-cell communication [11-14]. Components present 
in exosomes can also help modify the functions of different 
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cells, such as angiogenesis. In the process of angiogenesis, 
new capillaries are created from existing vasculature, which 
is regulated according to the balance between pro- and anti-
angiogenic stimuli [15-17]. Although exosomal release is 
a normal cellular process, an increase in its rate and its differ-
ential cargo protein expression are favorable for oncogenic 
progression and metastasis [11,18]. Exosomes can be col-
lected from blood, plasma, amniotic fluid, saliva, urine, etc.,  
by ultracentrifugation or mini-SEC and assessed for molecu-
lar components such as DNA, RNA, miRNA, and proteins 
[19]. Angiogenesis is an important element in tumor growth 
and metastasis. For solid tumors, adequate blood supply is 
of critical importance for their development. The forma-
tion of new vasculature in the tumor microenvironment is 
encouraged by TEX, which accumulate in the tumor micro-
environment (TME) [20]. Factors inducing angiogenesis 
and lymphangiogenesis are receiving increasing attention, 
especially in the field of neoplastic vascularization [21].
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MECHANISM OF ANGIOGENESIS/VASCULATURE  
IN TUMOR MICROENVIRONMENT

Angiogenesis and lymphangiogenesis are the processes 
where new blood and lymphatic vessels, respectively, are 
formed. Neovascularization, involving tumor angiogenesis, 
consists of the following steps: protease production, endo-
thelial cell proliferation and migration, vascular tube forma-
tion, anastomosis of newly formed tubes, synthesis of a new 
basement membrane, and incorporation of pericytes and 
smooth muscle cells. In the first step, the tissue basement 
membrane is locally destroyed by proteases, which imme-
diately creates a hypoxic environment. Angiogenic factors 
start to activate endothelial cells (ECs) to migrate. After the 
activation of ECs by angiogenic stimuli, proteolytic enzymes 
are produced, that degrade the perivascular extracellular 
matrix (ECM) and the rest of the basement membrane. Sub-
sequently, the ECs proliferate and migrate into the peri-
vascular area, forming “primary sprouts”, followed by the 
synthesis of a new basement membrane, tube-like structures 
formation, blood vessel maturation and complete capillary 
loops, through which blood can flow [21-23].

The new vasculature in the tumor microenvironment is 
structurally and functionally abnormal compared to normal 

blood vessels [21], which contributes to the heterogeneity  
in tumor blood flow. The tumor blood vessels are immature 
and leaky [24], characterized by smaller diameter [24-27], 
more permeability [24,26-28] with lack of or a detached 
pericyte and basement membrane [24,26,29], heterogeneous 
vascular density [24-26], and nearly equal microvascular and 
interstitial fluid pressure [24,28,30]. In addition, fast prolifer-
ating cancer cells compress intratumoral blood and lymphatic 
vessels, and as a result, generate pressure and lead to abnor-
malities in the microenvironment such as impaired blood 
supply, interstitial hypertension, hypoxia and acidosis [31].

ANGIOGENIC FACTORS

Vascular endothelial cells divide about every 1000 days 
on average [32]. In growing cancers, endothelial cells are 
vigorously active because of the release of many angiogenic 
factors [22]. Angiogenesis is regulated by both activator and 
inhibitor molecules. However, angiogenesis in neoplasms 
is characterized by both up-regulation of the activators 
as well as down-regulation of the negative regulators of 
vessel growth [33]. Stimulating factors involve proteins, 
such as epidermal growth factor (EGF), estrogen, basic and 
acidic fibroblast growth factor (FGF), interleukin 8 (IL-8), 
prostaglandin E1 and E2, tumor necrosis factor α (TNF-α), 
angiogenin, transforming growth factor (TGF-α), TGF-β, 
platelet-derived endothelial growth factor (PDGF), granu-
locyte colony-stimulating factor (G-CSF), placental growth 
factor (PGF), hepatocyte growth factor (HGF) and vascular 
endothelial growth factor (VEGF), which can activate ECs 
growth and motility. VEGF and bFGF are particularly 
important in tumor angiogenesis [21,22]. 

The VEGF family and their receptors (VEGFR) are 
powerful angiogenic agents in neoplastic tissues, as well as in 
normal tissues [34-36]. Some angiogenic states can be trigge- 
red by hypoxia resulting from the increasing distance 
between the growing tumor cells and the host capillaries or 
from the inefficiency of new vessels. Hypoxia induces the 
expression of VEGF and its receptor via hypoxia-inducible 
factor-1α (HIF-1α) [37]. The binding of VEGF to its receptor 
activates proteins relay, that transmit a signal into the nucleus 
of the endothelial cell. The nuclear signal prompts a group 
of genes to manufacture the products required for new endo-
thelial cell growth. ECs activated by VEGF produce matrix 
metalloproteinases (MMPs). The MMPs break down the 
ECM that fills the spaces between cells and is made up  
of proteins and polysaccharides. This matrix permits the 
migration of ECs. The ECs begin to divide as they migrate 
into the surrounding tissues. Soon they organize them-
selves into hollow tubes that evolve gradually into a mature 
network of blood vessels with the help of an adhesion factor, 
such as integrin α or β [38,39]. Newly formed blood vessels 
need to be stabilized to mature. Angiotensin-1, -2, and their 
receptor Tie-2 can stabilize and govern vascular growth 
[40-42]. 

On the immunohistochemical examination, the VEGF 
family and their receptors were found to be expressed in 
about half of the investigated human cancers [43]. These 
studies also indicated, that the levels of angiogenic factors 
in tissue reflect the aggressiveness with which tumor cells 
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Extracellular vesicles (EVs) represent the particles shed from cells into the 
extracellular environment. Their diameters range from 30 nm to 100 nm [1] 
(modified)

Figure 1. Vesicles ranking in size

Graphic presentations involve:
-	exosomes biogenesis, followed by invagination of cell membrane forming 

endosomes and sequentially, multivesicular bodies (MVBs),
-	exosomes secretion, with fusion of MVBs with cell membrane leading to 

exocytosis of exosomes to extracellular space,
-	exosomes uptake, with three mechanisms of interactions between secreted 

exosomes and with target cell: 
	 1) interaction of exosomes membrane proteins with receptor of target cell;  

2) fusion of exosomes membrane with acceptor cell membrane;  
3) internalization of exosomes structure with acceptor cell through 
endocytosis [30,168-172] (modified)

Figure 2. Exosomes life cycle
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spread, and thus have a predictive value in the identification 
of high-risk patients with poor prognosis [44-63]. It was 
also reported that physiological concentrations of thyroid 
hormone are pro-angiogenic by multiple mechanisms. This 
increases the possibility that the thyroid hormone (thyroxine) 
is a case of a non-protein stimulator of angiogenesis that 
may contribute to clinical resistance to anti-angiogenesis 
drugs [64]. Prostaglandin E2 (PGE2), as a mitogen in epithe-
lial tumor cells, is another example of a non-protein stimula-
tor of angiogenesis in the vascular endothelium. It has been 
also shown that the overexpression of cyclooxygenase-2  
(an enzyme for the conversion of arachidonic acid to pros-
taglandin H2) is accompanied by enhanced expression and 
production of angiogenic factors such as VEGF, FGF-2, 
HIF-1, MMPs, and adhesion receptors of the integrin 
families. Therefore, it has been determined, that a high 
output of PGE2 via increased expression of cyclooxygen-
ase-2, causes tumor development [65,66]. Furthermore, the 
CCN family of matricellular proteins are cytokines linking 
cells to the extracellular matrix. CCN3 is pro-angiogenic, 
while CCN5 is anti-angiogenic [67-70]. Multimerin 2 
(MMRN2) has anti-angiogenic potential, and its down-
modulation occurs in the context of tumor-associated angio-
genesis [71,72].

There are many naturally occurring proteins, that can 
inhibit angiogenesis [21]. These signals may systemati-
cally disrupt blood vessel formation or support the removal  
of existing vessels. Inhibitors function by acting on several 
proteins, that have been identified as angiogenic activators 
[22]. For angiogenesis to proceed, the functions of negative 
regulators of vessel growth may need to be down-regulated 
[21]. The inhibitors include naturally occurring factors 
such as angiostatin, endostatin, interferon, platelet factor 4, 
thrombospondin, prolactin 16 kd fragment, tissue inhibitor 
of metalloproteinase-1, -2, and -3, interleukin 1 and interleu-
kin 12, and retinoic acid [73-75]. Angiostatin is composed  
of one or more fragments of plasminogen [76]. It induces 
apoptosis in ECs and tumor cells, and inhibits migration, 
and formation of tubules in ECs [77,78]. Immunohisto-
chemical examination of angiostatin-treated tumors indicated 
a decrease in the expression of mRNA for VEGF and bFGF 
[79]. Endostatin binds to the receptor in ECs and may block 
ECs focal adhesion [80,81]. Endostatin also inhibits growth 
factors (e.g., bFGF and VEGF-A), and induces proliferation 
and migration of endothelial cells in vitro and in vivo [82-84].

TUMOR MICROENVIRONMENT PROMOTING AN-
GIOGENESIS VIA EXOSOMES

It is well known that angiogenesis is regulated by oxygen 
supply and stimulated when tumor tissues require the nutri-
ents and oxygen, that are provided by blood vessels [21, 
22]. Oxygen is the key to cell growth or local metastasis, 
and its level correlates with the metabolism of endothelial 
or cancer cells [85,86]. Oxygen pressure in normal cells is 
about 40-60 mmHg, as opposed to the majority of malig-
nancies, where the level is about 10 mmHg [87]. Oxygen 
deprivation in the TME is the result of low supply, because 
of the distance from supporting blood vessels, irregular 
tumor vascularization and the increasingly high demand 

from proliferating cancer cells [88,89]. This condition of 
insufficient oxygen supply, called hypoxia, characterizes 
malignant tumors, and is involved in their aggressiveness 
and metastasis [90,91]. To monitor oxygen supply, various 
oxygen-sensing mechanisms are present in ECs and smooth 
muscle cells (SMCs), such as nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases, endothelial nitric 
oxide synthases (eNOS), and heme-oxygenases [92]. Other 
oxygen sensors expressed in vascular cells are hypoxia-
inducible transcription factors (HIFs), the major components 
of hypoxia signaling pathways [93].

In response to oxygen insufficiency, cancer cells modify 
the transcription of genes connected with oxygen monitor-
ing mechanisms, especially HIFs [93]. Almost all types  
of cancer are characterized by the activation of HIFs. HIFs 
are present in 3 isoforms of the oxygen-sensitive HIF-α 
(HIF-1α, HIF-2α, or HIF-3α), and a constitutively expressed 
HIF-1β subunit [94,95]. The response to hypoxic condi-
tions is through the activation of HIF-dependent signaling 
pathways, that regulate the expression of genes associated 
with angiogenesis, epithelial-to-mesenchymal transition 
(EMT), metastasis and cellular adaptation for survival in 
hypoxic conditions [96]. Hypoxia also induces an increased 
release of exosomes from oxygen-deprived tumor cells, in 
comparison to cells in normoxic conditions, especially in 
the context of long-term hypoxia [97]. Studies showed, 
that moderate (1% O2) and severe (0.1% O2) hypoxia lead 
to a significant increase in the number of exosomes, as 
observed in three different breast cancer cell lines [98]. In 
addition to the quantitative impact of exosome secretion, 
hypoxia-induced stress also causes significant changes in 
the content and function of exosomes [99]. Exosomes also 
play a major role in the communication between hypoxic 
tumors and their microenvironments [18]. Hypoxia-induced 
exosomes cross-talk with surrounding stromal tissues and 
transfer tumor phenotypes promoting tumor angiogenesis, 
invasion, metastasis and immune escape [99].

In the context of angiogenesis, hypoxia is a major inductor 
[18]. Hypoxic exosomes, by alterations in their molecular 
cargo, modulate tumor-ECs communication, inducing ECs 
proliferation and tube formation [18] (Figure 3). The expres-
sion of different non-coding RNAs delivered by exosomes, 
such as miR-210, miR135b, miR23a, miR494, is regulated 

Hypoxic condition in the tumor environment increases the release of tumor-
derived exosomes (TEX) and is a strong stimuli for the communication between 
cancer and endothelial cells (ECs). TEX transfer molecular information, which 
after uptake by ECs, promote their adhesion, proliferation, migration, tube 
formation, and as a result pathological angiogenesis [20] (modified)

Figure 3. Cancer and endothelial cells cross-talk
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by hypoxia [99]. Research has shown that hypoxic exosomes 
with miR-210 were released from breast cancer in significant 
quantities through HIF-1α activation [98]. Hypoxia induces 
neutral sphingomyelinase2 (nSMase2), mediating mRNA 
sorting in exosomes, and leads to the secretion of miR-210, 
which plays a role in angiogenesis [100]. In vitro studies 
present tube formation in human umbilical vein endothelial 
cells (HUVECs) incubated with hypoxic exosomes rich in 
miR-210 and released from human leukemic cells [101]. 
In another study, expression of exosomal miR-135b was 
significantly higher in hypoxia-resistant multiple myeloma 
(HR-MM) as compared to normoxic cells [102]. Moreover, 
this exosomal miR-135b was captured by ECs and enhanced 
angiogenesis via HIF-1 activation [102]. 

Targeting prolyl hydroxylase and tight junction protein 
ZO-1 by exosomal miR23a derived from hypoxic lung 
cancer cells also stimulates angiogenesis [103]. In exosomal 
cargo derived from hypoxic lung cancer cells, miR-494 was 
highly expressed via the HIF-1α-mediated mechanism, fol-
lowing capture by ECs, which in turn down-regulated PTEN 
and activated the Akt/eNOS pathway [104]. Furthermore, 
in exosomes released from hypoxic human squamous carci-
noma cells, A431 was found to facilitate angiogenesis [105], 
while hypoxic glioblastoma exosomes were enriched with 
VEGF [106-110]. Furthermore, hypoxic colorectal cancer 
exosomes were found to stimulate the proliferation of ECs 
[111]. Moreover, hypoxic hepatocellular carcinoma [112], 
and breast cancer cells were seen to induce angiogenesis  
in vitro and in vivo via miR-23a and miR-210, respectively, 
while enclosed in their exosomes [98]. In addition, exosomes 
originating from hypoxic brain tumor glioblastoma multi-
forme cells were noted to present increased levels of IL-8 
and PDGF as angiogenic stimulatory molecules [108].

EVs produced by hypoxic tumor cells have been shown 
to have a more pronounced effect on ECs in promoting 
angiogenesis than those derived from normoxic cells [102, 
113]. Hypoxia increases the production of tumor and stromal 
cell-derived EVs, and alters their cargo [98,102,103,114, 
115]. For example, miR-23a is found in the EVs of hypoxic, 
but not normoxic, lung cancer cells [103]. Increased EVs 
production by hypoxic endothelial cells was abrogated by 
siRNA targeting hypoxia-inducible factor 1, thus provid-
ing a clear link between cell response to hypoxia and EVs 
production [114].

The tumor microenvironment consists of cellular and 
acellular factors and includes ECM, cancer-associated 
fibroblasts (CAFs), inflammatory immune cells and tumor-
associated vasculature [116]. CAFs are important compo-
nents within the TME that play a key role in tumorigenesis. 
Analysis with mass spectrometry has identified a plethora 
of growth factors released by CAFs-derived exosomes such 
as modulators of epidermal growth factor receptor (EGFR), 
insulin-like growth factor receptor (IGFR), platelet-derived 
growth factor receptor (PDGFR), chemokines, cytokines, 
and matrix metalloproteinases. These factors remodel 
the ECM significantly and contribute to important hall-
marks necessary for cancer progression, such as sustained 
growth, invasion, inflammation, angiogenesis, metastasis 
and therapeutic resistance [117-119]. Furthermore, studies 
demonstrate a correlation between hypoxic conditions  

and the activation of CAFs-prostate cancer cells with an 
insufficient oxygen supply, that released exosomes contain-
ing nearly three times more protein than that in normoxic 
conditions, resulting in CAFs induction [120], promotion  
of EMT, stemness, and angiogenesis [121,122].

MOLECULAR CARGO OF TEX INFLUENCING 
ANGIOGENESIS / TEX CONVERTING ENDOTHELIAL 
CELLS

Endothelial cells belonging to the tumor microenviron-
ment are key components providing a conduit to nutrients, 
and represent a source of trophic factors [123]. Angiogen-
esis, a complex and multistep process, consists of prolifera-
tion, migration, invasion, adhesion and differentiation of 
ECs [124]. Various physiological and pathological condi-
tions [125] stimulating vascularization, following tumor 
growth and metastasis [126], are regulated via the transfer 
of pro-angiogenic molecules from tumor to endothelial 
cells by EVs (Figure 2). In a variety of cancer types, EVs 
have been shown to increase tube formation, migration, 
cell–cell adhesion and proliferation in ECs [100,102,113, 
127-133]. Studies have been performed to determine the 
relationship between EVs and pathological angiogenesis 
[134]. It was demonstrated that HUVECs induce pathologi-
cal angiogenesis [135] via an abundance of genetic informa-
tion transferred by EVs [136]. In response to TEX uptake 
by HUVECs, tube formation, proliferation, migration and 
adherence were observed. TEX were investigated to have the 
potential to reprogram and induce phenotypic modulation 
of ECs. Studies indicated that HUVECs internalize TEX 
carrying angiogenic proteins within 4 hours, stimulating 
their conversion into vascular structures in vitro [20]. The 
same results were achieved in in vitro studies with exosomes 
derived from metastatic tumor cells [100]. Moreover, EVs 
from nasopharyngeal carcinoma (NPC) cells are enriched 
with HCLS1-associated protein X-1 (HAX-1) and could 
accelerate the proliferation and migration of HUVECs [134]. 

Exosomes also play an instrumental role in tumor-ECs 
communication [123]. The EVs from tumor cells contain 
various pro-angiogenic molecules, such as bFGF, VEGF 
and TGF-β, that function as stimuli for endothelial cell pro-
liferation and migration [137,138]. Activated EGFR found 
in EVs is sufficient to induce EGFR and VEGFR signaling 
in recipient endothelial cells [128, 139]. ECs incorporated 
TEX with cargo such as tetraspanin 8, CD106, and activated 
VEGFs, resulting in ECs proliferation, migration, sprouting 
and maturation of ECs progenitors [140]. The endothelial 
progenitor cells release exosomes that interact with mature 
ECs, and integration of their cargos trigger AKT signal-
ing, resulting in angiogenesis [141]. Tetraspanins were dis-
cussed for their role in exosome biogenesis, cargo sorting, 
cancer progression, and are suggested to be key players in 
the process of angiogenesis [142]. Exosomes derived from 
myeloma and breast cancers demonstrate the presence of 
Syndecan-1, VEGF and HGF, which lead to increased endo-
thelial invasion through the ECM [143]. Melanoma-derived 
exosomes were also shown to produce angiogenic growth 
factors [144].
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With the aid of exosomes derived from glioma cells, 
the oncogenic receptor EGFRvIII was transported. This 
resulted in EGFRvIII-dependent transcription, transform-
ing phenotype and oncogenic activity [139]. Additionally, by 
delivering Epidermal Growth Factor Receptor (EGFR) [128] 
and miR-9 to ECs [145], skin cancer-derived exosomes can 
promote angiogenesis. Exosomes originated from melanoma 
cells, including miR-9, enhance angiogenesis and metastasis 
via activation of the JAK-STAT pathway after internalization 
by ECs [145]. Increased vascularization has been associ-
ated with the packaging of CO-029/D6. 1A Tetraspanin in 
pancreatic cancer-derived exosomes [142], and of miR- 92a 
in leukemia-derived exosomes which can regulate integrin 
5 to promote migration and proliferation of ECs and tube 
formation [146]. Other EV-derived molecules that have been 
shown to play a role in promoting angiogenesis include 
miR-105, miR-142-3p, miR-210 and H19 lncRNA [103, 
129-131,133,147,148].

The integrity of vascular barriers is frequently associated 
with metastatic dissemination. TEX carrying miR-105 are 
known to destroy vascular endothelial barriers by targeting 
the tight junctions of ECs and modifying the expression  
of claudin 5, zonula occludens protein 1, and occludin, 
thereby promoting metastasis in breast cancer [147]. Brain 
tumor-derived exosomes containing miR-181c modulate 
actin in ECs and promote the breakdown of the blood-brain 
barrier by 3-phosphoinositide-dependent protein kinase-1 
degradation [149]. Similarly, exosomes produced by glio-
blastoma cells containing high levels of VEGF-A induce 
ECs permeability and angiogenesis in vitro [150]. In the 
same way, melanoma-derived exosomes induce pulmonary 
vascular leakiness [151], and upregulate genes related to 
the tumor cell recruitment, such as stabilin 1, vitronectin, 
integrins, and ephrin receptor b4 in lymph nodes [144].

Exosomal miR-21 and 29a can act as ligands for toll-like 
receptors and can induce inflammatory responses during 
pre-metastatic niche formation [101]. Pre-metastatic niche 
formation contributes to the metastasis, where progenitors 
have shown an increased expression of VEGF-1 in target sites 
and overexpression of fibronectin in resident fibroblast [152].

Another report uncovered the fact that CD-105-positive 
exosomes possess an important role in establishing a niche 
in the lung microenvironment of SCID mice through the 
increased expression of MMP2, MMP9, and VEGFR1 [113].  
This suggests there are sub-populations with cell markers 
indicative of tumor-initiating cells. In related work, the 
impact of the heterogeneity found within tumors was inves-
tigated. In renal cell carcinoma cell lines, CD105-positive 
cells were found to release EVs that increase prolifera-
tion, vessel formation, and invasion in HUVECs, whereas 
CD105-negative cells did not [113]. Similarly, in liver cancer 
cells, CD90-positive cells were found to secrete EVs, that 
promote tube formation and cell-cell adhesion via the 
transfer of H19 lncRNA [129]. These results suggest, that 
subsets of tumor cells secrete EVs carrying a unique set of 
cargo capable of altering stromal cell phenotypes in specific 
ways [153].

EMT promotion, together with degradation of ECM 
and cell adhesion junctions between adjacent cells, is con-
ducted by activation of plasminogen and its conversion 

into plasmin, as triggered by exosomal hsp90, along with 
annexin-II released to the extracellular sites [154]. Com-
munication between metastatic tumor cells and ECs can 
activate various cytoskeletal proteins such as RAC1, which 
regulate endothelial tubular morphology by inducing tubular 
sprouting and spheroid formation [155,156]. Genes related 
to vascular remodeling, such as ephrin A3 and PTP1B were 
also reported to be expressed and transferred via exosomes 
[18].

POTENTIAL OF TEX AS NEW TARGETS IN CANCER 

In general, inhibitors of angiogenesis can be classified 
into two main groups: direct inhibitors, that target endothe-
lial cells in the growing vasculature, and indirect inhibitors, 
that target either tumor cells or the other tumor-associated 
stromal cells [157].

Cytotoxic therapy suppresses cancer directly, while 
angiogenic therapy suppresses it indirectly by depriving 
cells of nutrients and oxygen. The use of angiogenesis-
suppressors and receptor-inhibitors can prohibit the neo-
vascularization of cancer tissue, as well as the growth of 
the tumor, and thus might be beneficial in the treatment of 
cancer [21]. During tumor progression, the anti-angiogenic 
factors’ production is reduced, with a simultaneous elevation 
of pro-angiogenic factors. This helps explain the current 
suboptimal effectiveness in the oncology of the pharmaco-
logical inhibitors of single endogenous angiogenic agents 
[22]. Moreover, evidence supports the view, that cytotoxic 
agents and anti-angiogenic agents would destroy both cancer 
cells and endothelial cells [158]. Abnormal microenviron-
ments characterized by impaired blood supply, interstitial 
hypertension, hypoxia, and acidosis [31] interfere with the 
delivery of therapeutic drugs, rendering tumor cells resistant 
to both radiation and some forms of cytotoxic therapy. These 
conditions also result in genetic stability and selection for 
more malignant cells with increased metastatic potential,  
and compromise the cytotoxic functions of immune cells. 
This emphasizes the importance of normalizing and regu-
lating tumor vasculature [21]. The adverse reactions of the 
inhibition of VEGF therapy is decreased production of NO, 
which will promote vasoconstriction, increase the periph-
eral resistance, and eventually elevate blood pressure [159]. 
Under normal conditions, VEGF is known to release vaso-
dilator nitric oxide (NO) in vessel walls by upregulating 
endothelial nitric oxide synthase and prostacyclin (PGI2), 
resulting in vasodilation, through the activation of the mito-
gen-activated protein kinase (MAPK) and phosphatidylino-
sitol 3-kinase (PI3K) downstream pathways [160-163]. 

The data suggest that TEX promote angiogenesis and 
drive cancer progression [20]. At the same time, exosomes 
can be used for drug targeting [18]. Future efforts should 
focus on eliminating or silencing TEX and thereby adding 
new options for improving existing anti-angiogenic ther-
apies [20]. Recent approaches involve counteracting the 
pro-tumorigenic effects of EVs. One of them is to directly 
remove EVs from circulation. This was conducted by 
Marleau [164], by using an extracorporeal hemofiltration 
system to filter blood for components under 200 nm and 
then removing them by means of applying affinity agents 
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for target molecules. In another investigation, the treatment 
of mice with anti-CD9 or anti-CD63 antibodies was found 
to stimulate EVs removal by macrophages, thus greatly 
decreasing EVs concentration in the blood. Although this 
treatment had no effect on the primary tumor, the authors 
observed a significant reduction in metastasis [165]. 
Blocking EVs biogenesis in tumor cells by silencing genes 
encoding EV-related machinery is another potential avenue 
for inhibiting tumorigenesis [130,147,166]. 

Exosomes can be also engineered to transport a variety 
of molecules like protein, peptides, drugs, etc. even across 
the blood-brain barrier without inducing any systemic toxic 
effects, making them promising candidates for drug delivery. 
Exosomes have been used for the delivery of various chemo-
therapeutics and also natural substances like curcumin, resve-
ratrol, etc. Similarly, nanoformulations of other natural drug 
candidates against pro-angiogenic factors may provide selec-
tive inhibition and might also be a promising option [167].

CONCLUSION

While elaborating on tumor progression, which is tightly 
connected with neoplastic vascularisation, we have to take  
into consideration the presence of TEX in TME. The 
release of tumor – as well as stromal cell-derived exosomes 
increases in hypoxic conditions, thereby initiating and pro-
moting the angiogenesis process.

Hypoxia-induced TEX cross-talk with surrounding 
stromal tissues results in the transfer of tumor phenotypes, 
which, as a consequence, results in tumor angiogenesis, 
invasion, metastasis and immune escape. In the context 
of angiogenesis, by the alteration in their molecular cargo, 
hypoxic TEX reprogram ECs and induce phenotypic mod-
ulation of ECs. As a result, increased migration, cell-cell 
adhesion, proliferation of ECs, and enhanced tubular sprout-
ing, and tube formation is observed. The potential of TEX, 
as angiogenesis process inducers, make them a target in anti-
angiogenic therapy. The conducted attempts of eliminating 
or silencing TEX have resulted in a significant reduction in 
metastasis. Blocking TEX biogenesis is another potential 
in decreasing their negative role. Being natural cell trans-
port vehicles, exosomes can be also engineered to transport  
a variety of molecules, making them promising candidates 
for drug delivery. These findings provide new insights into 
the complex cellular and genomic networks and can give 
new perceptivity into improving existing anti-angiogenic 
therapies.

LIST OF ABBREVIATIONS

Mini-SEC – mini size exclusion chromatography; 
CCN – family of regulatory proteins (Connective tissue 
growth factor (CTGF), Cystein rich protein (Cyr61) and 
Nephroblastoma overexpressed gene (nov)); 
PTEN – phosphatase and tensin homolog deleted on 
chromosome ten;
SCID mice – severe combined immunodeficiency mice.
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