Effect of thyroxine on cardiac GLUT4 changes in duced by doxorubicin

Authors

  • Slawomir Mandziuk Oncological Pneumology and Alergology Department, Medical University of Lublin, Lublin, Poland Author
  • Urszula Czubara Medical Biology Unit, Medical University of Lublin, Poland Author
  • Agnieszka Korga Medical Biology Unit, Medical University of Lublin, Poland Author
  • Barbara Madej-Czerwonka Department of Human Anatomy, Medical University of Lublin, Poland Author
  • Monika Cendrowska-Pinkosz Department of Human Anatomy, Medical University of Lublin, Poland Author
  • Jaroslaw Dudka Medical Biology Unit, Medical University of Lublin, Poland Author

DOI:

https://doi.org/10.12923/j.2084-980X/26.3/a.20

Keywords:

doxorubicin, throxine, GLUT4, chronic heart and failure

Abstract

Doxorubicin is an efficient anticancer drug that causes a dose-dependent cumulative cardiotoxicity as one of the most serious side effects. This cardiotoxicity may develop for months or years leading to heart failure that is not curable. It is generally believed that the mechanism of these phenomena is followed by periodical, progressive oxidative damage in mitochondria triggered by doxorubicin. Serious disturbance in mitochondria may activate glycolysis as an alternative pathway to ATP synthesis. The fuel for this process is glucose, which is transported into cells via GLUT4. The objective of this study was to test the thesis that thyroxine modulates changes in cardiac expression of GLUT4 in rats receiving doxorubicin. Rats were intraperitoneally treated with doxorubicin (1.5 mg/kg) once a week for ten weeks. Apart from doxorubicin, thyroxine was simultaneously given in drinking water (0.2 or 2.0 mg/l) for fourteen weeks. The study confirmed that doxorubicin increases cardiac concentration of mRNA and protein for GLUT4. Thyroxine had no significant effect on mRNA and protein of GLUT4 changes induced by doxorubicin.

References

1. Abdel-Aleem S et al.: Acute and chronic effects of adriamycin on fatty acids oxidation in isolated cardiac myocytes. J. Mol. Cell. Cardiol., 29; 789, 1997.

2. Braunwald E, Zipes D, Libby P.: Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 2151-2171, Philadelphia 2001.

3. Czarnecka A.M., et al.: Cancer as a mitochondriopathy. J. Cancer Mol., 3, 71, 2007.

4. Delcers M, Goormaghtigh E.: Adriamycin effects on insulin secretion, Ca²+ movements and glucose oxidation in pancreatic islet cells. Pharmacol. Res. Commun., 17, 227, 1985.

5. Doroshow J.H., Synold T.W., Somlo G.: Oxidative DNA base modifications in peripheral blood mononuclear cells of patients treated with high-dose infusional doxorubicin. Blood, 97, 2839, 2001.

6. Geetha A, Catherine J, Shyamala Devi C.S.: Effect of alfa-tocopherol on doxorubicin induced alterations in glucose metabolism-A pilot study. J. Biosci., 14, 243, 1989.

7. Holness MJ, Sugden MC.: Hepatic carbon flux after re-feed-ing. Hyperthyroidism blocks glycogen synthesis and the suppression of glucose output observed in response to carbohydrate re-feeding. Biochem J., 247, 627, 1987.

8. Hrelia S. et al.: Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochimica et Biophysica Acta., 1569, 150, 2002.

9. Hyyti O.M., et al.: Thyroid hormone controls myocardial substrate metabolism through nuclear recepto-mediated and rapid posttranscriptional mechanisms. Am. J. Physiol. Endocrinol. Metab., 290, E372-379, 2006.

10. Kahn BB.: Glucose transport: pivotalstep in action. Lilly Lecture, Diabetes, 45, 1644, 1995.

11. Loffer J., Blanc M.H.: Diabetes secondary to endocrine disease. Rev. Med. Siusse Romande., 115, 721, 1995.

12. Lombardi A., et al.: 3,5-diiodo-L-thyronine regulates glucose-6-phosphate dehydrogenase activity in the rate. Endocrinology, 141, 1729, 2000.

13. Minotti G., et al.: Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185, 2004.

14. Naskalski J.W., Dembińska-Kieć A.: Diagnostyka laboratoryjna z elementami biochemii klinicznej. Wrocław 2005; 401-405.

15. Ogedegbe A.E.O., et al.: Hyperlactatemia syndrome associated with HIV therapy. Lancet, 3, 329, 2003.

16. Pelicano H., Carney D., Huang P.: ROS stress in cancer calls and therapeutic implications. Drug Resist Updat., 7, 97, 2004.

17. Singal P.K., Deally C.M., Weinberg L.E.: Subcellular effects of adriamycin in the heart: a concise review. J. Mol. Cell. Cardiol., 19, 817, 1987

18. Stanley W.C., Beręsewicz A., Chandler M.P.: Metabilizm substratów energetycznych w normalnym i niewydolnym sercu i możliwości jego terapeutycznych modyfikacji. Kardiologia Polska, 53, 54, 2000.

19. Tokarska-Schlattner M., et al.: New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. J. Mol. Cell. Cardiol., 41, 389, 2006.

20. Wallace K.B.: Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol. Toxicol.; 93, 105, 2003.

21. Weinstein S.P., et al.: Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology, 135, 649, 1994.

Downloads

Published

2013-09-30

How to Cite

Mandziuk, S., Czubara, U., Korga, A., Madej-Czerwonka, B., Cendrowska-Pinkosz, M., & Dudka, . J. (2013). Effect of thyroxine on cardiac GLUT4 changes in duced by doxorubicin. Current Issues in Pharmacy and Medical Sciences, 26(3), 331-334. https://doi.org/10.12923/j.2084-980X/26.3/a.20