The Phosphoglucose isomerase – “portrait of the protein with many faces”
DOI:
https://doi.org/10.12923/Keywords:
isomerase, biological function, clasiffication structures, mechanizm of reactionAbstract
In this review article the biological functions, classification, structures, mechanisms of reaction and potential applications of the phosphoglucose isomerase and its inhibitors were discussed.
The knowledge of the various biological processes in which PGI is involved can be very helpful in the treatment of cancer, bacteriosis, mycosis and parasitosis.
References
1. Anand K. et al.: Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv. Acta Cryst. Section F, F66, 490-497, 2010.
2. Arsenieva D. et al.: The crystal structure of rabbit phosphoglucose isomerase complexed with 5-phospho-D-arabinohydroxyamic acid. Proc. Natl. Acad. Sci. USA, 99, 5872-5877, 2002.
3. Bateman A.: The SIS domain: a phosphosugar-biding domain. Trends Biochem. Sci., 24, 94-95, 1999.
4. Bateman A. et al.: The Pfam protein families database. Nucleic Acids Res., 28, 263-266, 2000.
5. Baumann M. and Brand K.: Purification and characterization of phospohexose isomerase from human gastrointestinal carcinoma and its potential relationship to neuroleukin. Cancer Res., 48, 7018-7021, 1988.
6. Baumann M. et al.: The diagnostic validity of the serum tumor marker phosphohexose isomerase (PHI) in patients with gastrointestinal, kidney and breast cancer. Cancer Invest., 8, 351-356.
7. Berrisfold J.M. et al.: The structures of inhibitor complexes of Pyrococcus furiosus phosphoglucose isomerase provide insights into substrate binding and catalysis. J. Mol. Biol., 343, 649-657, 2004.
8. Cao M.J. et al.: Purification of a novel serine proteinase inhibitor from the skeletal muscle of white croacker (Argyrosomus argentatus). Biochem. Biophys. Res. Commun., 272, 485-489, 2000.
9. Chaput M. et al.: The neutrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature, 332, 454-455, 1988.
10. Davies C. et al.: The structure of human phosphoglucose isomerase complexed with
a transition-state analoque. Acta Crystallogr. Sect. D Biol. Crystallogr., 59, 1111-1113, 2003.
11. Filella X. et al.: Serum phosphohexose isomerase activities in patients with colorectal cancer. Tumour Biol., 12, 360-367, 1991.
12. Gurney M.E. et al.: Molecular cloning and expression of neuroleukin a neutrophic factor for spinal and sensory neurons. Science, 234, 566-574, 1986.
13. Gurney M.E. Neuroleukin: basic biology and functional interaction with human immunodeficiency virus. Immunol. Rev., 100, 203-223, 1987.
14. Hansen T. et al.: Novel type of glucose-6-phosphate isomerase in the hyperthermophilic Archaeon Pyrococcus furiosus. J. Bacteriol., 183, 3428-3435, 2001.
15. Hansen T. et al.: Cupin-type phosphoglucose isomerases (Cupin-PGIs) constitute a novel metal-dependent PGI family representing a convergent line of PGI evolution. J. Bacteriol., 187, 1621-1631, 2005.
16. Hansen T. et al.: Bifunctional phosphoglucose/phosphomannose isomerase from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily. J. Biol. Chem., 279, 2262-2272, 2004.
17. Hardre R. et al.: Synthesis and evaluation of a new inhibitor of phosphoglucose isomerase: the enediolate analogue 5-phospho-D-arabinohydroxymate. Bioorg. Med. Chem. Lett., 8, 3435-3438, 1998.
18. Hirono Y. et al.: Expression of autocrine motility factor receptor correlates with disease progression in human gastric cancer. Br. J. Cancer, 74, 2003-2007, 1996.
19. Jeffery C.J.: Moonlighting proteins. Trends Biochem. Sci., 24, 8-11, 1999.
20. Jeffery C.J.: Moonlighting proteins: old proteins learning new tricks. Trends Genet. Sci., 19, 415-417, 2003.
21. Jeong J.-J. et al.: Characterization of the cupin phosphoglucose isomerase from the hyperthermophilic archaeon Thermococcus litoralis. FEBS Lett., 535, 200-204, 2003.
22. Kugler W., et al.: Glucose-6-phosphate isomerase deficiency. Baillieres’s Best Pract. Res. Clin. Haematol. 13, 89-101, 2000.
23. Lee J.H. et al.: Crystal structure of rabbit phosphoglucose isomerase complexed with its substrate D-fructose 6-phosphate. Biochemistry, 40, 7799-7805, 2001.
24. Lin H.-Y. et al.: Effects of inherited mutations on catalytic activity and structural stability of human glucose-6-phosphate isomerase expressed in Escherichia coli. Biochim. Biophys. Acta, 1794, 315-323, 2009.
25. Mathur D. and Garg L.: Functional phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv: rapid purification with high yield and purity. Protein Expr. Purif., 52, 373-378, 2007.
26. Milewski S. et al.: Structural analogues of reactive intermediates as inhibitors of glucosamine-6-phosphate synthase and phosphoglucose isomerase. Arch. Biochem. Biophys., 450, 39-49, 2006.
27. Pelicano H. et al.: Glycolysis inhibition for anticancer treatment. Review. Oncogene, 25, 4633-4646, 2006.
28. Richards G. et al.: Characterization of a lysyl aminopeptidase activity associated with phosphoglucose isomerase of Vibrio vulnificus. Biochem. Biophys. Acta, 1700, 219-229, 2004.
29. Richards G.: Structural and functional analyses of phosphoglucose isomerase from Vibrio vulnificus and its lysyl aminopeptidase activity. Biochem. Biophys. Acta, 1702, 89-102, 2004.
30. Rose I.A.: Mechanism of the aldose-ketose isomerase reactions. Adv. Enzymol. Relat. Areas. Mol. Biol, 43, 491-517, 1975.
31. Schaller M. et al.: Raised levels of anti-glucose-6-phophate isomerase IgG in serum and synovial fluid from patients with inflammatory arthritis. Ann. Rheum. Dis., 64, 743-749, 2005.
32. Schreyer R. and Böck A.: Phosphoglucose isomerase from Escherichia coli K10: purification, properties and formation under aerobic and anaerobic condition. Arch. Microbiol., 127, 289-298, 1980.
33. Sun L.C. et al.: Glucose-6-phosphate isomerase is endogenous inhibitor to myofibryl-bound serine proteinase of crucian carp (Carassius auratus). J. Agric. Food Chem., 57, 55-49-5555, 2009.
34. Sun Y.-J. et al.: The crystal structure of a multifunctional protein: Phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc. Natl. Acad. Sci. USA, 96, 5412-5417, 1999.
35. Swan M.K. et al.: Structural evidence for a hydride transfer mechanism of catalysis in phosphoglucose isomerase from Pyrococcus furiosus. J. Biol. Chem., 278, 47261-47268, 2003.
36. Tran S.T. et al.: Cloning and characterization of phosphoglucose isomerase from Sphingomonas chungbukensis DJ77. BMB reports, 42, 172-177, 2009.
37. Tran S.T. et al.: Cloning and characterization of phosphomannose isomerase from Sphingomonas chungbukensis DJ77. BMB reports, 42, 523-528, 2009.
38. Xu W. et al.: The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood, 87, 4502-4506, 1996.
39. Yakirevich E. and Naot Y.: Cloning of a glucose phosphate isomerase/neuroleukin- like sperm antigen involved in sperm agglutination. Biol. Reprod., 62, 1016-1023, 2000.
40. Yoon R.Y. et al.: Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides. Appl. Microbiol. Biotechnol., 83, 295-303, 2009.
41. Verhees C.H. et al.: The phosphoglucose isomerase from the hyperthermophilic Archaeon Pyrococcus furiosus is a unique glycolytic enzyme that belongs to the cupin superfamily. J. Biol. Chem., 276, 40-926-40932, 2001.
42. Watanabe H. et al.: Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res., 56, 2960-2963, 1996.
43. Wojciechowski M. et al.: Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modeling studies in drug design. Acta Biochem. Polon., 52, 647-653, 2005.
Downloads
Published
Issue
Section
License
Copyright (c) 2010 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.