Effect of heat treatment on the secondary metabolites composition of <i>Curcuma longa</i> L. rhizome
PDF

Keywords

Curcuma longa L.
medicinal plant
thermal treatment
curcuminoids
polyphenols

Abstract

Turmeric (Curcuma longa L.) is a widely known plant that is commonly used as a spice. It is also a valuable raw material that is increasingly used in the pharmaceutical industry and, notably, in dietary supplement recipes. For a long time, the healing properties of turmeric have been used in folk medicine in many regions of the world, mainly to treat various types of diseases. When developing recipes and preparing preparations with medicinal properties, the turmeric rhizome is subjected to various types of thermal treatment. These processes cause qualitative and quantitative changes in the composition of the secondary metabolites present in the turmeric rhizome. Due to its great popularity and widespread use as a raw material with health-promoting properties, turmeric undeniably deserves an in-depth analysis in order to optimize the treatment process and minimize its negative impact on active compounds. The presented review summarizes the current state of knowledge on the impact of thermal treatment of the turmeric rhizome on the composition of its biologically active compounds. The data provided in this review indicate that the content of active compounds in turmeric rhizomes is strictly correlated not only with the used type of processing, but it also strongly depends on the selection of key parameters. Therefore, it is difficult to clearly indicate the type of processing that would be the most beneficial for the composition of its active compounds.

PDF

References

1. Sam DS. Importance and effectiveness of herbal medicines. J Pharmacogn Phytochem. 2019;8(2):354-7.

2. Carmona F, Soares Pereira AM. Herbal medicines: Old and new concepts, truths and misunderstandings. Rev Bras Farmacogn. 2013; 23(2):379-85.

3. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R. Role of nutraceuticals in human health. J Food Sci Technol. 2012;49(2): 173-83.

4. Santini A, Tenore GC, Novellino E. Nutraceuticals: A paradigm of proactive medicine. Eur J Pharm Sci. 2017;96:53-61.

5. Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J Tradit Complement Med. 2017;7(2):205-33.

6. Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, et al. Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Curr Pharm Des. 2019;25(8):871-935.

7. Tang H, Lu D, Pan R, Qin X, Xiong H, Dong J. Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci. 2009; 85(1-2):1-10.

8. Naik SR, Thakare VN, Patil SR. Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: evidence of its antioxidant property. Exp Toxicol Pathol. 2011;63(5):419-31.

9. Lin HY, Lin JN, Ma JW, Yang NS, Ho CT, Kuo SC, et al. Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy. J Funct Foods. 2015;12:439-49.

10. Hong D, Zeng X, Xu W, Ma J, Tong Y, Chen Y. Altered profiles of gene expression in curcumin-treated rats with experimentally induced myocardial infarction. Pharmacol Res. 2010;61(2):142-8.

11. Hismiogullari AA, Hismiogullari SE, Karaca O, Sunay FB, Paksoy S, Can M, i in. The protective effect of curcumin administration on carbon tetrachloride (CCl4)-induced nephrotoxicity in rats. Pharmacol Rep. 2015;67(3):410-6.

12. Chen DY, Shien JH, Tiley L, Chiou SS, Wang SY, Chang TJ, et al. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem. 2010;119(4):1346-51.

13. Zhang D, Luo J, Yan D, Jin C, Dong X, Xiao X. Effects of Two Curcuminoids on Candida albicans. Chin Herb Med. 2012;4(3): 205-12.

14. Cooney JM, Barnett MPG, Dommels YEM, Brewster D, Butts CA, McNabb WC, et al. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a(-/-) mouse model of inflammatory bowel disease. J Nutr Biochem. 2016;27:181-92.

15. Khan MA, El-Khatib R, Rainsford KD, Whitehouse MW. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids. Bioorg Chem. 2012;40(1):30-8.

16. Lopez-Jornet P, Gómez-García F, García Carrillo N, Valle-Rodríguez E, Xerafin A, Vicente-Ortega V. Radioprotective effects of lycopene and curcumin during local irradiation of parotid glands in Sprague Dawley rats. Br J Oral Maxillofac Surg. 2016;54(3):275-9.

17. Naik RS, Mujumdar AM, Ghaskadbi S. Protection of liver cells from ethanol cytotoxicity by curcumin in liver slice culture in vitro. J Ethnopharmacol. 2004;95(1):31–7.

18. Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord. 2014;167: 368-75.

19. Ahmed T, Gilani AH. A comparative study of curcuminoids to measure their effect on inflammatory and apoptotic gene expression in an Aβ plus ibotenic acid-infused rat model of Alzheimer’s disease. Brain Res. 2011;1400:1-18.

20. Patel N, Thakkar V, Moradiya P, Gandhi T, Gohel M. Optimization of curcumin loaded vaginal in-situ hydrogel by box-behnken statistical design for contraception. J Drug Deliv Sci Technol. 2015;29:55-69.

21. Hewlings SJ, Kalman DS. Curcumin: A Review of Its Effects on Human Health. Foods. 2017;6(10):92.

22. Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel). 2022;11(2):135.

23. Akarchariya N, Sirilun S, Julsrigival J, Chansakaowa S. Chemical profiling and antimicrobial activity of essential oil from Curcuma aeruginosa Roxb., Curcuma glans K. Larsen & J. Mood and Curcuma cf. xanthorrhiza Roxb. collected in Thailand. Asian Pac J Trop Biomed. 2017;7(10):881-5.

24. Sasikumar B. Genetic resources of Curcuma: Diversity, characteri-zation and utilization. Plant Genet Resour. 2005;3:1479-2621.

25. Hossain MdA, Ishimine Y. Growth, Yield and Quality of Turmeric (Curcuma longa L.) Cultivated on Dark-red Soil, Gray Soil and Red Soil in Okinawa, Japan. Plant Prod Sci. 2005;8(4):482-6.

26. Sandeep IS, Sanghamitra N, Sujata M. Differential effect of soil and environment on metabolic expression of turmeric (Curcuma longa cv. Roma). Indian J Exp Biol. 2015;53(6):406-11.

27. Hayakawa H, Kobayashi T, Minaniya Y, Ito K, Miyazaki A, Fukuda T, et al. Development of a Molecular Marker to Identify a Candidate Line of Turmeric (Curcuma longa L.) with a High Curcumin Content. Am J Plant Sci. 2011;2(1):15-26.

28. Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010;123(1):85-91.

29. Wu D, Liu N, Ye Y. The zingiberaceous resources in China. Huazhong university of science and technology university press, Wuhan, China. 2016:143.

30. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: Biological actions and medicinal applications. Curr Sci. 2004;87(1):44-53.

31. Sopher DE. Indigenous Uses of Turmeric (Curcuma domestica) in Asia and Oceania. Anthropos. 1964;59(1-2):93-127.

32. Velayudhan KC, Dikshit N, Nizar A. Ethnobotany of turmeric (Curcuma longa L.). Indian J Tradit Knowl. 2012;11:607-14.

33. Ahmad M, Zafar M, Shahzadi N, Yaseen G, Murphey TM, Sultana S. Ethnobotanical importance of medicinal plants traded in Herbal markets of Rawalpindi- Pakistan. J Herb Med. 2018;11:78-89.

34. Deogade SC, Ghate S. Curcumin: therapeutic applications in systemic and oral health. Int J Biol Pharm Res. 2015;6(4):281-90.

35. Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res. 2013;57(9):1510-28.

36. Li S. Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.). Pharm Crop. 2011;5(1):28-54.

37. Abe R, Ohtani K. An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines. J Ethnopharmacol. 2013;145(2):554-65.

38. Odonne G, Valadeau C, Alban-Castillo J, Stien D, Sauvain M, Bourdy G. Medical ethnobotany of the Chayahuita of the Paranapura basin (Peruvian Amazon). J Ethnopharmacol. 2013;146(1):127-53.

39. Singh AG, Kumar A, Tewari DD. An ethnobotanical survey of medicinal plants used in Terai forest of western Nepal. J Ethnobiol Ethnomed. 2012;8(1):19.

40. Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients. 2018;10(10):1553.

41. Bussmann RW, Paniagua Zambrana NY, Romero C, Hart RE. Astonishing diversity-the medicinal plant markets of Bogotá, Colombia. J Ethnobiol Ethnomed. 2018;14(1):43.

42. Wangchuk P, Pyne SG, Keller PA. Ethnobotanical authentication and identification of Khrog-sman (Lower Elevation Medicinal Plants) of Bhutan. J Ethnopharmacol. 2011;134(3):813-23.

43. Lakshmi S, Padmaja G, Remani P. Antitumour Effects of Isocurcumenol Isolated from Curcuma zedoaria Rhizomes on Human and Murine Cancer Cells. Int J Med Chem. 2011;2011:253962.

44. Itokawa H, Shi Q, Akiyama T, Morris-Natschke S, Lee KH. Recent advances in the investigation of curcuminoids. Chin Med. 2008;3(1):11.

45. Lobo R, Prabhu K, Shirwaikar A, Shirwaikar A. Curcuma zedoaria Rosc, (white turmeric): A review of its chemical, pharmacological and ethnomedicinal properties. J Pharm Pharmacol. 2009;61:13-21.

46. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The Essential Medicinal Chemistry of Curcumin. J Med Chem. 2017;60(5):1620-37.

47. Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091-112.

48. Sheng L, Wei Y, Pi C, Cheng J, Su Z, Wang Y, i in. Preparation and evaluation of curcumin derivatives nanoemulsion based on turmeric extract and its antidepressant effect. Int J Nanomedicine. 2023;18:7965-83.

49. Lee YS, Oh SM, Li QQ, Kim KW, Yoon D, Lee MH, et al. Validation of a quantification method for curcumin derivatives and their hepatoprotective effects on nonalcoholic fatty liver disease. Curr Issues Mol Biol. 2022;44(1):409-32.

50. Ahmed T, Gilani AH. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol Biochem Behav. 2009;91(4):554-9.

51. Dall’Acqua S, Stocchero M, Boschiero I, Schiavon M, Golob S, Uddin J, et al. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach. Fitoterapia. 2016;109:125-31.

52. Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxy-curcumin. Food Chem. 2006;98(4):720-4.

53. Jiang JL, Jin XL, Zhang H, Su X, Qiao B, Yuan YJ. Identification of antitumor constituents in curcuminoids from Curcuma longa L. based on the composition-activity relationship. J Pharm Biomed Anal. 2012;70:664-70.

54. Yodkeeree S, Chaiwangyen W, Garbisa S, Limtrakul P. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem. 2009;20(2):87-95.

55. Yue GGL, Chan BCL, Hon PM, Lee MYH, Fung KP, Leung PC, et al. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem Toxicol. 2010;48(8-9):2011-20.

56. Zhang LJ, Wu CF, Meng XL, Yuan D, Cai XD, Wang QL, et al. Comparison of inhibitory potency of three different curcuminoid pigments on nitric oxide and tumor necrosis factor production of rat primary microglia induced by lipopolysaccharide. Neurosci Lett. 2008;447(1):48-53.

57. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141-53.

58. Awasthi M, Singh S, Pandey V, Dwivedi U. Curcumin: Structure-Activity Relationship Towards its Role as a Versatile Multi-Targeted Therapeutics. Mini-Rev Org Chem. 2017;14(4):311-32.

59. Krup V, Prakash L H, A H. Pharmacological Activities of Turmeric (Curcuma longa linn): A Review. J Homeop Ayurv Med. 2013; 02(04):133.

60. Lal J. Turmeric, Curcumin and Our Life: A Review. Bull Environ Pharmacol Life Sci. 2012;1(7):11-7.

61. Nayak B, Liu RH, Tang J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains--a review. Crit Rev Food Sci Nutr. 2015;55(7):887-919.

62. Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr. 2018;58(15):2531-48.

63. Chumroenphat T, Somboonwatthanakul I, Saensouk S, Siriamornpun S. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods. Food Chem. 2021;339:128121.

64. Hadi S, Artanti N, Rinanto Y, Wahyuni D. Curcuminoid content of Curcuma longa L. and Curcuma xanthorrhiza rhizome based on drying method with NMR and HPLC-UVD. IOP Conf Ser: Mater Sci Eng. 2018;349:012058.

65. Lee BH, Choi H, Kim MR, Hong J. Changes in Chemical Stability and Bioactivities of Curcumin by Ultraviolet Radiation. Food Sci Biotechnol. 2013;22(1):279-82.

66. Prathapan A, Lukhman M, Arumughan C, Athinarayanan S, Raghu KG. Effect of heat treatment on curcuminoid, colour value and total polyphenols of fresh turmeric rhizome. Int J Food Sci Technol. 2009;44(7):1438-44.

67. Gan H, Charters E, Driscoll R, Srzednicki G. Effects of Drying and Blanching on the Retention of Bioactive Compounds in Ginger and Turmeric. Horticulturae. 2017;3(1):13.

68. Farzana W, Pandiarajan T, Ganapathy S. Development of mobile boiling system for turmeric (Curcuma longa). Innov Food Sci Emerg Technol. 2018;47(1):428-38.

69. Singh G, Arora S, Kumar S. Effect of mechanical drying air conditions on quality of turmeric powder. J Food Sci Technol. 2010;47(3):347-50.

70. Lekshmi PC, Arimboor R, Indulekha PS, Menon AN. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. Int J Food Sci Nutr. 2012;63(7):832-4.

71. Zagórska J, Kukula-Koch W, Czop M, Iłowiecka K, Koch W. Impact of Thermal Processing on the Composition of Curcuma longa Rhizome. Foods. 2023;12(16):3086.

72. Hirun S, Utama-Ang N, Roach PD. Turmeric (Curcuma longa L.) drying: an optimization approach using microwave-vacuum drying. J Food Sci Technol. 2014;51(9):2127-33.

73. Charoenchai L, Monton C, Luprasong C, Kraisintu K. Pretreatment study of turmeric rhizomes and optimization of drying methods using microwave oven and hot air oven to obtain high quality of turmeric powder. J Curr Sci and Technol. 2020;10(1):49-57.

74. Gill RS, Singh S, Hans VS, Mittal TC. Turmeric (Curcuma longa) drying in natural circulation solar dryer: An experimental evaluation. J Food Process Eng. 2021;44(1):e13765.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2024 Authors

Downloads

Download data is not yet available.