Luteolin alleviates renal ischemia-reperfusion injury in streptozotocin induced diabetic rats by inhibiting metalloenzymes expression
PDF

Keywords

luteolin
renal ischemia reperfusion
diabetic nephropathy
MMPs
HDAC-2

Abstract

Diabetes patients are more prone to acute kidney injury (AKI). Endopeptidases known as matrix metalloproteinases (MMPs) cause extracellular matrix destruction and are responsible for ischemic organ damage. Diabetic nephropathy (DN) affects almost one third of all diabetic patients. MMP-2 and MMP-9 lead to the breakdown of the basement membrane of the glomeruli and thereby the advancement of ischemic injury in diabetes. In addition, histone deacetylase-2 (HDAC-2) is the primary regulator of important signalling processes in the diabetic kidney. A possible treatment approach for diabetic kidney preservation is the flavonoid luteolin (LT), which has anti-inflammatory and antioxidant effects. Our aim was to investigate the renoprotective potential of LT in diabetes by modulating MMP-2, MMP-9 and HDAC-2 activity. The expression of MMP-2, MMP-9 and HDAC-2 were statistically higher in streptozotocin-induced diabetic rat renal homogenate after renal ischemic reperfusion injury. These changes were reversed with 2 weeks of pre-treatment with LT (50 mg/kg po). In diabetic rats, pre-treatment with LT significantly reduced oxidative stress, inflammation and fibrosis compared to control animals. Preventive LT prior to renal ischemia showed improvement in body weight, kidney weight/body weight ratio, reversal of renal injury and biochemical changes with lower activity of malondialdehyde (MDA), myeloperoxidase (MPO), hydroxyproline (HP), pathological damage and fibrosis in renal tissue. Our data imply that LT prevents DN in rats by inhibiting MMP-2, MMP-9 and HDAC-2 expression, as well as by lowering the indices of oxidative stress, pro-inflammatory factors and fibrosis.

PDF

References

1. Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. JASN. 2003;14:2199-210.

2. Lejay A, Fang F, John R, Van JAD, Barr M, Thaveau F, et al. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. JMCC. 2016;91:11-22.

3. Zhang Y, Hu F, Wen J, Wei X, Zeng Y, Sun Y, et al. Effects of sevoflurane on NF-кB and TNF-α expression in renal ischemia–reperfusion diabetic rats. IR. 2017;66(10):901-10.

4. Chan KL. Role of Nitric Oxide in ischemia and reperfusion injury. Curr Med Chem Anti-Inflammatory & Anti-Allergy Agents. 2002;1;1-13.

5. Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol. 2005;288:91-7.

6. Gong DJ, Wang L, Yang YY, Zhang JJ, Liu XH. Diabetes aggravates renal ischemia and reperfusion injury in rats by exacerbating oxidative stress, inflammation, and apoptosis. Ren Fail. 2019;41(1): 750-61.

7. Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab Invest. 2011;91(2):170-80.

8. Zakiyanov O, Kalousová M, Zima T, Tesař V. Matrix metalloproteinases in renal diseases: a critical appraisal. Kidney Blood Press Res. 2019;44:298-330.

9. Mathalone N, Lahat N, Rahat MA, Bahar-Shany K, Oron Y, Geyer O. The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. Graefe’s Arch Clin Exp Ophthalmol. 2007;245(5):725-32.

10. Muhs BE, Plitas G, Delgado Y, Ianus I, Shaw JP, Adelman MA, et al. Temporal expression and activation of matrix metalloproteinases-2, -9, and membrane type 1 – Matrix metalloproteinase following acute hindlimb ischemia. J Surg Res. 2003;111(1):8-15.

11. Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA. Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 2002;23(3):260-9.

12. Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101(15):1833-9.

13. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JRB, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106(12):1543-9.

14. Basile DP, Fredrich K, Weihrauch D, Hattan N, Chilian WM, Angiostatin WMC. Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. J Physiol Renal Physiol. 2004;286:893-902.

15. Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol. 2005;288:91-7.

16. Melin J, Hellberg O, Larsson E, Zezina L, Fellström BC. Protective effect of insulin on ischemic renal injury in diabetes mellitus. Kidney Int. 2002;61(4):1383-92.

17. Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH, Cheng S, et al. Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J. 2006;20(11):1898-900.

18. Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discovery Today. 2011;16:762-78.

19. Dong Y, Zhao H, Man J, Fu S, Yang L. MMP-9-mediated regulation of hypoxia-reperfusion injury-related neutrophil inflammation in an in vitro proximal tubular cell model. Ren Fail. 2021;43(1):900-10.

20. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, et al. Histone deacetylase-2 is a key regulator of diabetes-and transforming growth factor-1-induced renal injury. Am J Physiol Renal Physiol. 2009;297:729-39.

21. Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, et al. Histone deacetylase inhibition reduces myocardial ischemia‐reperfusion injury in mice. FASEB J. 2008;22(10):3549-60.

22. Fan J, Alsarraf O, Dahrouj M, Platt KA, Chou CJ, Rice DS, et al. Inhibition of HDAC2 protects the retina from ischemic injury. Invest Ophthalmol Vis Sci. 2013;54(6):4072-80.

23. Aufhauser DD, Hernandez P, Concors SJ, O’Brien C, Wang Z, Murken DR, et al. HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Sci Rep. 2021;11(1).

24. Cosentino CC, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, et al. Histone deacetylase inhibitor enhances recovery after AKI. JASN. 2013;24(6):943-53.

25. Du Y, Tang G, Yuan W. Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG-induced NRK-52E cells. Int J Mol Med. 2020;45(1):210-22.

26. Ma X, Wang Q. short-chain fatty acids attenuate renal fibrosis and enhance autophagy of renal tubular cells in diabetic mice through the HDAC2/ULK1 axis. Endocrinol Metab. 2022;37(3):432-43.

27. Xiong C, Wu Q, Fang M, Li H, Chen B, Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. J Int Med Res. 2020;48(4).

28. Zhang M, He L, Liu J, Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Expe Clin Endocrinol Diabetes. 2021;129(10):729-39.

29. Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med. 2011;2011:323171.

30. Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018;225:342-58.

31. Lv J, Zhou D, Wang Y, Sun W, Zhang C, Xu J, et al. Effects of luteolin on treatment of psoriasis by repressing HSP90. Int Immunopharmacol. 2020;79.

32. López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9(1):31-59.

33. Arslan BY, Arslan F, Erkalp K, Alagöl A, Sevdi MS, Yıldız G, et al. Luteolin ameliorates colistin-induced nephrotoxicity in the rat models. Ren Fail. 2016;38(10):1735-40.

34. Domitrović R, Cvijanović O, Pugel EP, Zagorac GB, Mahmutefendić H, Škoda M. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology. 2013;310:115-23.

35. Xin S bin, Yan H, Ma J, Sun Q, Shen L. Protective effects of luteolin on lipopolysaccharide-induced acute renal injury in mice. MSM. 2016;22:5173-80.

36. Hong X, Zhao X, Wang G, Zhang Z, Pei H, Liu Z. Luteolin treatment protects against renal ischemia-reperfusion injury in rats. Mediators Inflamm. 2017;2017.

37. Liu Y, Shi B, Li Y, Zhang H. Protective effect of luteolin against renal ischemia/reperfusion injury via modulation of pro-inflammatory cytokines, oxidative stress and apoptosis for possible benefit in kidney transplant. MSM. 2017;23:5720-7.

38. Bonino B, Leoncini G, De Cosmo S, Greco E, Russo GT, Giandalia A, et al. Antihypertensive treatment in diabetic kidney disease: The need for a patient-centered approach. Medicina. 2019;55(7):382.

39. El Mouhayyar C, Riachy R, Khalil AB, Eid A, Azar S. Inhibitors in diabetes and microvascular complications: A review. Int J Endocrinol. 2020;2020:1762164.

40. Ozbilgin S, Ozkardesler S, Akan M, Boztas N, Ozbilgin M, Ergur BU, et al. Renal ischemia/reperfusion injury in diabetic rats: The role of local ischemic preconditioning. Biomed Res Int. 2016;2016:8580475.

41. Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front Pharmacol. 2019;10(FEB).

42. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8.

43. Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem. 1983;132(2):345-52.

44. Woessner JF. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93(2):440-7.

45. Daude RB, Shah JS. Protective effect of alpha-cyperone in renal ischemia-reperfusion induced acute kidney injury by modulation of metalloenzyme expression. Eur Chem Bull. 2023;12:5629-43.

46. Pourghasem M, Shafi H, Babazadeh Z, Zahra F. Histological changes of kidney in diabetic nephropathy Caspian. Caspian J Intern Med. 2015;6.

47. de Ponte MC, Cardoso VG, Gonçalves GL, Costa-Pessoa JM, Oliveira-Souza M. Early type 1 diabetes aggravates renal ischemia/reperfusion-induced acute kidney injury. Sci Rep. 2021;11(1).

48. Naylor RW, Morais MRPT, Lennon R. Complexities of the glomerular basement membrane. Nat Rev Nephrol. 2021;17:112-27.

49. Ali MM, Mahmoud AM, Le Master E, Levitan I, Phillips SA. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am J Physiol Heart Circ Physiol. 2019;316:647-63.

50. Rosas-Martínez L, Rodríguez-Muñoz R, Namorado-Tonix M del C, Missirlis F, del Valle-Mondragón L, Sánchez-Mendoza A, et al. Hyperglycemic levels in early stage of diabetic nephropathy affect differentially renal expression of claudins-2 and -5 by oxidative stress. Life Sci. 2021;268.

51. Ramnath RD, Butler MJ, Newman G, Desideri S, Russell A, Lay AC, et al. Blocking matrix metalloproteinase-mediated syndecan-4 shedding restores the endothelial glycocalyx and glomerular filtration barrier function in early diabetic kidney disease. Kidney Int. 2020;97(5):951-65.

52. Kumar Bhatt L, Addepalli V. Minocycline with aspirin: An approach to attenuate diabetic nephropathy in rats. Ren Fail. 2011;33(1):72-8.

53. Tong Y, Liu S, Gong R, Zhong L, Duan X, Zhu Y. Ethyl vanillin protects against Kidney injury in diabetic nephropathy by inhibiting oxidative stress and apoptosis. Oxid Med Cell Longev. 2019;2019.

54. Zang Y, Igarashi K, Li YL. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Biosci Biotechnol Biochem. 2016;80(8):1580-6.

55. Zhang Y, Tian XQ, Song XX, Ge JP, Xu YC. Luteolin protect against diabetic cardiomyopathy in rat model via regulating the AKT/GSK-3β signalling pathway. Biomed Res. 2017;28(3).

56. Shen SC, He F, Cheng C, Xu BL, Sheng JL. Uric acid aggravates myocardial ischemia –reperfusion injury via ROS/NLRP3 pyroptosis pathway. Biomed Pharmacother. 2021;133:110990.

57. Jalal DI, Maahs DM, Hovind P, Nakagawa T. Uric acid as a mediator of diabetic nephropathy. Semin Nephrol. 2011;31(5):459-65.

58. Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: An inception cohort study. Diabetes. 2009;58(7):1668-71.

59. Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013;83:1029-41.

60. Kalbolandi SM, Gorji AV, Babaahmadi-Rezaei H, Mansouri E. Luteolin confers renoprotection against ischemia – reperfusion injury via involving Nrf2 pathway and regulating miR320. Mol Biol Rep. 2019;46(4):4039-47.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2023 Authors

Downloads

Download data is not yet available.