Antioxidant potential and chemical composition of new generation extruded snack pellets supplemented with fresh broccoli addition
PDF

Keywords

extrusion-cooking
fresh broccoli
snack pellets
antioxidant potential
polyphenols
chemical properties

Abstract

The therapeutic potential of broccoli has been highlighted by its function in the prevention of cancer, diabetes and other diseases. As a result, there is a great deal of interest in creating innovative functional foods supplemented with broccoli. In the extrusion-cooking process, raw materials based on potato mixes with the addition of fresh broccoli (Brassica oleracea L. var italicaBrassicaceae) were used to create new generation extruded snack pellets. A prototype single screw extruder-cooker with L/D=20 was utilized, and various processing conditions (screw speed 60 and 100 rpm, as well as either 32 and 36% levels of initial moisture content) were applied. Mixtures of 10% and 30% fresh broccoli contents were investigated. The final snack pellets obtained under such processing conditions were determined for their antioxidant potential, polyphenols, proximate composition and fatty acids profile. We found that in the presence of fresh broccoli in blends, higher screw speed and higher moisture content allowed obtaining (in most samples) a higher polyphenal content in the resulting pellets. Over all, the antioxidant potential of snack pellets increased with the addition of fresh broccoli. Pellets with 30% addition of the broccoli processed at screw speed 100 rpm at moisture content of 32% displayed the highest total polyphenols content and highest antioxidant activity. Moreover, such samples demonstrated notable increase in the content of total protein, crude ash, as well as MUFA and PUFA in the total amount of fatty acids.

PDF

References

1. Baker MT, Lu P, Parrella JA, Leggette HR. Consumer acceptance toward functional foods: A scoping review. Int J Environ Res Public Health. 2022;22;19(3):1217.

2. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr. 2012;51(6):637-63.

3. Hung H-C, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, et al. Fruit and vegetable intake and risk of major chronic disease. JNCI J Natl Cancer Inst. 2004;96(21):1577-84.

4. Martirosyan D, Kanya H, Nadalet C. Can functional foods reduce the risk of disease? Advancement of functional food definition and steps to create functional food products. Funct Foods Heal Dis. 2021; 11(5):213.

5. Mandrich L, Caputo E. Brassicaceae-derived anticancer agents: Towards a green approach to beat cancer. Nutrients. 2020;12(3):868.

6. Ravikumar C. Therapeutic potential of Brassica oleracea (broccoli) – A review. Int J Drug Dev Res. 2015;7(2):9-10.

7. Tang G-Y, Meng X, Li Y, Zhao C-N, Liu Q, Li H-B. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients. 2017;9(8):857.

8. Le TN, Chiu CH, Hsieh PC. Bioactive compounds and bioactivities of Brassica oleracea L. var. italica sprouts and microgreens: An updated overview from a nutraceutical perspective. Plant. 2020;9(8):946.

9. Dominguez-Perles R, Moreno DA, Carvajal M, Garcia-Viguera C. Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innov Food Sci Emerg Technol. 2011;12(3):361-8.

10. Marchioni I, Martinelli M, Ascrizzi R, Gabbrielli C, Flamini G, Pistelli L, et al. Small functional foods: Comparative phytochemical and nutritional analyses of five microgreens of the brassicaceae family. Foods. 2021;10(2):427.

11. Sánchez-Bravo P, Abellán Á, Zapata PJ, García-Viguera C, Domínguez-Perles R, Giménez MJ. Broccoli products supplemented beers provide a sustainable source of dietary sulforaphane. Food Biosci. 2023;51:102259.

12. Zhang S, Ying DY, Cheng LJ, Bayrak M, Jegasothy H, Sanguansri L, et al. Sulforaphane in broccoli-based matrices: Effects of heat treatment and addition of oil. LWT. 2020;128:109443.

13. Cai YX, Wang JH, McAuley C, Augustin MA, Terefe NS. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. J Funct Foods. 2019;61:103461.

14. Abellán Á, Domínguez-Perles R, Giménez MJ, Zapata PJ, Valero D, García-Viguera C. The development of a broccoli supplemented beer allows obtaining a valuable dietary source of sulforaphane. Food Biosci. 2021;39:100814.

15. Alvarez-Jubete L, Valverde J, Kehoe K, Reilly K, Rai DK, Barry-Ryan C. Development of a novel functional soup rich in bioactive sulforaphane using Broccoli (Brassica oleracea L. ssp. italica) florets and byproducts. Food Bioprocess Technol. 2014;7(5):1310-21.

16. Bas-Bellver C, Barrera C, Betoret N, Seguí L. Impact of disruption and drying conditions on physicochemical, functional and antioxidant properties of powdered ingredients obtained from brassica vegetable by-products. Foods. 2022;11(22):3663.

17. Córdova C, Vivanco JP, Quintero J, Mahn A. Effect of drum-drying conditions on the content of bioactive compounds of broccoli pulp. Foods. 2020;9(9):1224.

18. Mahn A, Martin C, Reyes A, Saavedra A. Evolution of sulforaphane content in sulforaphane-enriched broccoli during tray drying. J Food Eng. 2016;186:27-33.

19. Costa-Pérez A, Moreno DA, Periago PM, García-Viguera C, Domínguez-Perles R. A new food ingredient rich in Bioaccessible (Poly)Phenols (and Glucosinolates) obtained from stabilized broccoli stalks. Foods. 2022;11(12):1734.

20. Acosta DFR, Gómez JEB, Duque JFS, Galindez JZZ, Cruz JAM. Antioxidant potential of extruded snacks enriched with hyper-protein quinoa flour and vegetable extracts. Food Sci Technol. 2022;42:e74621.

21. Bisharat GI, Katsavou ID, Panagiotou NM, Krokida MK, Maroulis ZB. Investigation of functional properties and color changes of corn extrudates enriched with broccoli or olive paste. Food Sci Technol Int. 2015;21(8):613-30.

22. Ying D, Sanguansri L, Cheng L, Augustin MA. Nutrient-dense shelf-stable vegetable powders and extruded snacks made from carrots and broccoli. Foods. 2021;10(10):2298.

23. Combrzyński M, Wójtowicz A, Mitrus M, Oniszczuk T, Matwijczuk A, Pawelczyk P, et al. Effect of starch type and screw speed on mechanical properties of extrusion-cooked starch-based foams. Int Agroph. 2019;33(2):233-40.

24. Wójtowicz A, Lisiecka K, Mitrus M, Nowak G, Golian M, Oniszczuk A, et al. Physical properties and texture of gluten-free snacks supplemented with selected fruit additions. Int Agrophys. 2019;4(33):407-16.

25. Chevilly S, Dolz-Edo L, Blanca J, Yenush L, Mulet JM. Identification of distinctive primary metabolites influencing broccoli (Brassica oleracea, var. Italica) taste. Foods. 2023;12(2):339.

26. Hong SJ, Jeong H, Yoon S, Jo SM, Lee Y, Park S-S, et al. A comprehensive study for taste and odor compounds using electronic tongue and nose in broccoli stem with different thermal processing. Food Sci Biotechnol. 2022;31(2):191-201.

27. Lisiecka K, Wójtowicz A. Possibility to save water and energy by application of fresh vegetables to produce supplemented potato-based snack pellets. Processes. 2020;8:153.

28. Oniszczuk A, Olech M. Optimization of ultrasound-assisted extraction and LC-ESI–MS/MS analysis of phenolic acids from Brassica oleracea L. var. sabellica. Ind Crops Prod. 2016;83:359-63.

29. Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem. 2001;49(6):2774-9.

30. Approved Methods of the American Association of Cereal Chemists. 9th ed, St Paul, MN, USA; 1995.

31. AOAC International, Horwitz W, Latimer GW. Official methods of analysis of AOAC International. AOAC International, Gaithersburg, MD; 2010.

32. AOAC. Fatty acids in oils and fats. Preparation of methyl esters. Boron trifluoride method. Official method 969.33. AOAC International, Rockville; 1990.

33. Schmid V, Trabert A, Schäfer J, Bunzel M, Karbstein HP, Emin MA. Modification of apple pomace by extrusion processing: Studies on the composition, polymer structures, and functional properties. Foods. 2020;9(10):1385.

34. Khanal RC, Howard LR, Prior RL. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing. J Food Sci. 2009;74(6):H174-82.

35. Soja J, Combrzyński M, Oniszczuk T, Biernacka B, Wójtowicz A, Kupryaniuk K, et al. The effect of fresh kale (Brassica oleracea var. sabellica) addition and processing conditions on selected biological, physical, and chemical properties of extruded snack pellets. Molecules. 2023;28(4):1835.

36. Bisharat GI, Lazou AE, Panagiotou NM, Krokida MK, Maroulis ZB. Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks. J Food Sci Technol. 2015;52(7):3986-4000.

37. Kasprzak K, Oniszczuk T, Wójtowicz A, Waksmundzka-Hajnos M, Olech M, Nowak R, et al. Phenolic acid content and antioxidant properties of extruded corn snacks enriched with kale. J Anal Methods Chem. 2018;2018:1-7.

38. Kita A, Nowak J, Michalska-Ciechanowska A. The Effect of the addition of fruit powders on the quality of snacks with Jerusalem artichoke during storage. Appl Sci. 2020;10(16):5603.

39. Camire ME, Dougherty MP, Briggs JL. Functionality of fruit powders in extruded corn breakfast cereals. Food Chem. 2007;101(2):765-70.

40. de la Fuente B, López-García G, Mañez V, Alegría A, Barberá R, Cilla A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods. 2019;8(7):250.

41. Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez D. UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. Int J Mol Sci. 2017;18(11):2330.

42. López-Cervantes J, Tirado-Noriega LG, Sánchez-Machado DI, Campas-Baypoli ON, Cantú-Soto EU, Núñez-Gastélum JA. Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int J Food Sci Technol. 2013; 48:2267-75.

43. Le TN, Luong HQ, Li H-P, Chiu C-H, Hsieh P-C. Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: A comprehensive study on in vitro disease models. Foods. 2019;8(11):532.

44. Yang M, Wang H, Zhou M, Liu W, Kuang P, Liang H, et al. The natural compound sulforaphene, as a novel anticancer reagent, targeting PI3K-AKT signaling pathway in lung cancer. Oncotarget. 2016;7(47):76656-66.

45. Subedi L, Cho K, Park YU, Choi HJ, Kim SY. Sulforaphane-enriched broccoli sprouts pretreated by pulsed electric fields reduces neuroinflammation and ameliorates scopolamine-induced amnesia in mouse brain through its antioxidant ability via Nrf2-HO-1 activation. Oxid Med Cell Longev. 2019;2019:549274.

46. Mirmiran P, Bahadoran Z, Hosseinpanah F, Keyzad A, Azizi F. Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. J Funct Foods. 2012; 4(4):837-41.

47. Bahadoran Z, Tohidi M, Nazeri P, Mehran M, Azizi F, Mirmiran P. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. Int J Food Sci Nutr. 2012;63(7):767-71.

48. Kasprzak-Drozd K, Oniszczuk T, Kowalska I, Mołdoch J, Combrzyński M, Gancarz M, et al. Effect of the production parameters and in vitro digestion on the content of polyphenolic compounds, phenolic acids, and antiradical properties of innovative snacks enriched with wild garlic (Allium ursinum L.) Leaves. Int J Mol Sci. 2022;23(22):14458.

49. Drużyńska B, Stępień K, Piecyk M. Wpływ gotowania i mrożenia na zawartość niektórych składników bioaktywnych i ich aktywność przeciwutleniającą w brokułach. Brom Chem Toksyksyl. 2009;2: 169-76.

50. Ellong EN, Billard C, Adenet S, Rochefort K. Polyphenols, carotenoids, Vitamin C content in tropical fruits and vegetables and impact of processing methods. Food Nutri Sci. 2015;6:299-313.

51. Vega-Galvez A, Uribe E, Pasten A, Camus J, Gomez-Perez LS, Mejias N, et al. Comprehensive evaluation of the bioactive composition and neuroprotective and antimicrobial properties of vacuum-dried broccoli (Brassica oleracea var. italica) powder and its antioxidants. Molecules. 2023;28(2):766.

52. Thomas M, Badr A, Desjardins Y, Gosselin A, Angers P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem. 2018;245:1204-11.

53. Xu Y, Xiao Y, Lagnika C, Song J, Li D, Liu C, et al. A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Dry Technol. 2020;38(10):1378-88.

54. Yilmaz MS, Şakiyan Ö, Barutcu Mazi I, Mazi BG. Phenolic content and some physical properties of dried broccoli as affected by drying method. Food Sci Technol Int. 2019;25(1):76-88.

55. Vallejo F, Tomas-Barberan FA, Garcia-Viguera C. Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. J Sci Food Agric. 2003;83:1511-6.

56. Kapoor B, Kapoor D, Gautam S, Singh R, Bhardwaj S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and potential health benefits. Curr Nutr Rep. 2021;10(3):232-42.

57. Zarubin NY, Strokova NG, Roshchina AN, Bredikhina O V, Ignatova TA. High-protein sublimated fish and vegetable based snacks. IOP Conf Ser Earth Environ Sci. 2020;548(8):082095.

58. Mahn A, Reyes A. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Technol Int. 2012;18(6):503-14.

59. Jing Y, Chi Y-J. Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue. Food Chem. 2013;138(2-3):884-9.

60. Zhang M, Bai X, Zhang Z. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J Cereal Sci. 2011; 54(1):98-103.

61. Nadeesha Dilrukshi HN, Torrico DD, Brennan MA, Brennan CS. Effects of extrusion processing on the bioactive constituents, in vitro digestibility, amino acid composition, and antioxidant potential of novel gluten-free extruded snacks fortified with cowpea and whey protein concentrate. Food Chem. 2022;389:133107.

62. Drabińska N, Nogueira M, Szmatowicz B. Valorisation of broccoli by-products: Technological, sensory and flavour properties of durum pasta fortified with broccoli leaf powder. Molecules. 2022;27:4672.

63. Krupa-Kozak U, Drabińska N, Bączek N, Šimková K, Starowicz M, Jeliński T. Application of Broccoli leaf powder in gluten-free bread: An innovative approach to improve its bioactive potential and technological quality. Foods. 2021;10:819.

64. Vázquez-Durán A, Gallegos-Soto A, Bernal-Barragán H, Mercedes López-Pérez M, Méndez-Albores A. Physicochemical, nutritional and sensory properties of deep fat-fried fortified tortilla chips with broccoli (Brassica oleracea L. convar. italica Plenck) flour. J Food Nutr. Res. 2014;53(4):313-23.

65. Li H, Xia Y, Liu H-Y, Guo H, He X-Q, Liu Y, et al. Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci Tech. 2022;119:288-308.

66. Torres-Moreno M, Torrescasana E, Salas-Salvadó J, Blanch C. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem. 2015;166:125-32.

67. Campas-Baypoli ON, Snchez-Machado DI, Bueno-Solano C, Núñez-Gastélum JA, Reyes-Moreno C, López-Cervantes J. Biochemical composition and physicochemical properties of broccoli flours. Int J Food Sci Nutr. 2009;60:163-73.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2023 Authors

Downloads

Download data is not yet available.