Abstract
The rising burden of Diabetes mellitus (DM) globally and particularly in sub-Sahara Africa calls for alternative treatment solutions. This is because the currently available drugs for its management are limited due to undesirable adverse effects and high cost. Thus, this review explores diabetes and summarizes its treatment options, focusing mainly on medicinal plants therapy. Information on twenty-five selected medicinal plants from sub-Sahara Africa having hypoglycemic and anti-diabetic potentials was obtained via electronic search of major databases, such as Pubmed/Medline, Scopus, Google Scholar and web of science. Predominant bioactive compounds found in these plants include tannins, carpaine, terpenoids, hexadecenoic acid, luteolin, saponins, glycosides, rutin, quercetin, vindoline and kaempferol. Robust evidence indicates that these medicinal plants and their bioactive components exert their antidiabetic potentials via different mechanisms, including: regeneration of pancreatic β-cell and insulin secretion; inhibition of α-amylase, inhibition of intestinal glucose absorption and liver glucose production; antioxidative stress; limitation of glycogen degradation and gluconeogenesis; anti-inflammatory, immunoregulatory. DM imposes a tremendous burden in the region, and its prevalence is not abating; thus the rich flora of the region with known hypoglycemic and antidiabetic efficacy could be explored as a complementary therapy in its management.
References
1. Uganda Ministry of Health. National Health Policy: Reducing poverty through promoting people’s health. Knowledge Management Portal; 2009.
2. Ssenyange CW, Namulindwa A, Oyik B, Ssebuliba J. Plants used to manage type II diabetes mellitus in selected districts of central Uganda. Afr Health Sci. 2015;15:496-502.
3. Fatoumata B, MamadouSaïdou B, Mohamet S, Joseph KS, Modou MG, El HB. Antidiabetic properties of Moringa oleifera: A review of the literature. J Diabetes Endocrinol. 2020;11:18-29.
4. Davis NS. Insulin, oral hypoglycemic agents and the pharmacology of the endocrine pancrease: Goodman and Gilman’s “Pharma-cological Basis of Therapeutics.” 11th ed. New York: McGraw Hill MedicalPublishing Division; 2006
5. International Diabetes Federation. Recommendations for managing type 2 diabetes in primary care; 2017.
6. International Diabetes Federation. IDF Diabetes Atlas; 2015.
7. Pastakia SD, Pekny CR, Manyara SM, Fischer L. Diabetes in sub-Saharan Africa – from policy to practice to progress: Targeting the existing gaps for future care for diabetes. Diabetes Metab Syndr Obes Targets Ther. 2017;10:247-63.
8. Alebel A, Wondemagegn AT, Tesema C, Kibret GD, Wagnew F, Petrucka P, et al. Prevalence of diabetes mellitus among tuberculosis patients in Sub-Saharan Africa: A systematic review and meta-analysis of observational studies. BMC Infect Dis. 2019;19:254.
9. Chamberlain JJ, Rhinehart AS, Shaefer CF, Neuman A. Diagnosis and management of diabetes: Synopsis of the 2016 American diabetes association standards of medical care in diabetes. Ann Intern Med. 2016;164:542-52.
10. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4-14.
11. Groenewald AJ, Van Wyk HJ, Walsh CM, Van Zyl S, Van Der Merwe LJ. Prevalence of diabetes mellitus in the rural southern Free State. SAFP. 2009;51:502-5.
12. Sicree R, Shaw J. Type 2 diabetes: An epidemic or not, and why it is happening. Diabetes Metab Syndr Clin Res Rev. 2007;1:75-81.
13. Erasmus RT, Soita DJ, Hassan MS, Blanco-Blanco E, Vergotine Z, Kengne AP, et al. High prevalence of diabetes mellitus and metabolic syndrome in a South African coloured population: Baseline data of a study in Bellville, Cape Town. SAMJ. 2012;102:841-4.
14. Aboua Y, Meyer S, Oguntibeju O. Diabetes mellitus: economic and health burden, treatment and the therapeutical effects of Hypoxis hemerrocallidea plant. Med Technol SA. 2016;30:39-46.
15. World Health Organization. Traditional medicine strategy 2002-2005. WHO/EDM/TRM/2002.1: Geneva, Switzerland; 2002.
16. Hall V, Thomsen R, Henriksen O, Lohse N. Diabetes in Sub Saharan Africa 1999-2011: Epidemiology and public health implications. A systematic review. BMC Public Health. 2011;11:564.
17. Sobngwi E, Mauvais-Jarvis F, Vexiau P, Mbanya JC GJ. Diabetes in Africans. Part 1: epidemiology and clinical specificities. Diabetes Metab J. 2001;27:628-34.
18. Mbanya JCN, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet. 2010;375:2254-66.
19. Kiawi E, Edwards R, Shu J, Unwin N, Kamadjeu R, Mbanya JC. Knowledge, attitudes, and behavior relating to diabetes and its main risk factors among urban residents in Cameroon: A qualitative survey. Ethn Dis. 2006;16:503-9.
20. Renzaho AMN. Fat, rich and beautiful: Changing socio-cultural paradigms associated with obesity risk, nutritional status and refugee children from sub-Saharan Africa. Heal Place. 2004;10:105-13.
21. Shirey K, Manyara SM, Atwoli L, Tomlin R, Gakinya B, Cheng S, et al. Symptoms of depression among patients attending a diabetes care clinic in rural western Kenya. J Clin Transl Endocrinol. 2015;2:51-4.
22. Saxena S, Thornicroft G, Knapp M, Whiteford H. Resources for mental health: scarcity, inequity, and inefficiency. Lancet. 2007;370:878-89.
23. Lund C, De Silva M, Plagerson S, Cooper S, Chisholm D, Das J, et al. Poverty and mental disorders: Breaking the cycle in low-income and middle-income countries. Lancet. 2011;378:1502-14.
24. Gill GV, Mbanya JC, Ramaiya KL, Tesfaye S. A sub-Saharan African perspective of diabetes. Diabetologia. 2009;52:8-16.
25. Chen R, Corona E, Sikora M, Dudley JT, Morgan AA, Moreno-Estrada A, et al. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet. 2012;8:e1002621.
26. Corona E, Chen R, Sikora M, Morgan AA, Patel CJ, Ramesh A, et al. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration. PLoS Genet. 2013;9:e1003447.
27. Osei K, Schuster DP, Amoah AGB, Owusu SK. Pathogenesis of type 1 and type 2 diabetes mellitus in sub-saharan Africa: Implications for transitional populations. J Cardiovasc Risk. 2003;10:85-96.
28. International Diabetes Federation. IDF Diabetes Atlas; 2019.
29. International Diabetes Federation. Data from: IFD Diabetes Altas Globally; 2017.
30. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577-85.
31. Ashcroft F. Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res. 1996;28:456-63.
32. Lee Y, Jun H. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 2014;63:9-19.
33. Züger D, Forster K, Lutz TA, Riediger T. Amylin and GLP-1 target different populations of area postrema neurons that are both modulated by nutrient stimuli. Physiol Behav. 2013;112-113:61-9.
34. Galderisi A, Sherr J, VanName M, Carria L, Zgorski M, Tichy E, et al. Pramlintide but Not Liraglutide Suppresses Meal-Stimulated Glucagon Responses in Type 1 Diabetes. J Clin Endocrinol Metab. 2018;103:1088-94.
35. Li X, Liu ZQ. Pharmacogenetic factors that affect drug metabolism and efficacy in Type 2 diabetes mellitus. Drug Metab Dis. 2017:157-79.
36. Omar B, Ahrén B. Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes. 2014;63:2196-202.
37. Hsia DS, Grove O, Cefalu WT. An Update on SGLT2 Inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24:73.
38. Akmal M, Wadhwa R. Alpha glucosidase inhibitors. Treasure Island (FL): StatPearls Publishing; 2021.
39. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002;18(Suppl 2).
40. Ün M, Erbaş O. Pancreatic islet cell transplantation. Demiroglu Sci Univ Florence Nightingale J Transplant. 2019;4:016-22.
41. Pareek H, Sharma S, Khajja BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn). BMC Complement Altern Med. 2009;9:2-8.
42. Meenakshi P, Bhuvaneshwari R, Rathi MA, Thirumoorthi L, Guravaiah DC, Jiji MJ, et al. Antidiabetic activity of ethanolic extract of Zaleya decandra in alloxan-induced diabetic rats. Appl Biochem Biotechnol. 2010;162:1153-9.
43. Aba PE, Asuzu IU. Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants : A review. Indian J Nat Prod Resour. 2018;9:85-96.
44. Hui H, Tang G, Go VLW. Hypoglycemic herbs and their action mechanisms. Chin Med. 2009;4:1-11.
45. Farzaei F, Morovati MR, Farjadmand F, Farzaei MH. A mechanistic review on medicinal plants used for diabetes mellitus in traditional Persian medicine. J Evidence-Based Complement Altern Med. 2017;22:944-55.
46. Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK, Kong L, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med. 2018;8:361-76.
47. WHO. Traditional Medicine; 2008. [http://www.who.int/mediacentre/factsheets/ fs134/en/]
48. WHO. WHO Traditional Medicine Strategy2014-2023. Geneva, Switzerland: WHO Press; 2013.
49. Thomson M, Al-Qattan KK, Divya JS, Ali M. Anti-diabetic and anti-oxidant potential of aged garlic extract (AGE) in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2016;16:17.
50. Tjeck OP, Souza A, Mickala P, Lepengue AN, M’Batchi B. Bio-efficacy of medicinal plants used for the management of diabetes mellitus in gabon: An ethnopharmacological approach. J Intercult Ethnopharmacol. 2017;6:206-17.
51. Hammeso WW, Emiru YK, Getahun KA, Kahaliw W. Antidiabetic and antihyperlipidemic activities of the Leaf Latex Extract of Aloe megalacantha Baker (Aloaceae) in streptozotocin-induced diabetic model. Evidence-Based Complement Altern Med. 2019;2019. https://doi.org/10.1155/2019/8263786.
52. Jaiswal YS, Tatke PA, Gabhe SY, Vaidya AB. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med. 2017;7:421-7.
53. Sunmonu TO, Lewu FB. Phytochemical analysis, in vitro antioxidant activity and inhibition of key diabetic enzymes by selected Nigerian medicinal plants with antidiabetic potential. Indian J Pharm Educ Res. 2019;53:250-60.
54. Nwauzoma AB, Dappa MS. Ethnobotanical studies of Port Harcourt Metropolis, Nigeria. ISRN Bot. 2013;2013. https://doi.org/10.1155/2013/829424.
55. Septembre-Malaterre A, Rakoto ML, Marodon C, Bedoui Y, Nakab J, Simon E, et al. Artemisia annua, a traditional plant brought to light. Int J Mol Sci. 2020;21:4986.
56. Lutgen P, Munyangi J, Idumbo M, Mupenda B. Five case reports on treatment of diabetes by Artemisia annua and Artemisia afra herbal tea. Pharm Pharmacol Int J. 2020;8:79-85.
57. Issa TO, Mohamed YS, Yagi S, Ahmed RH, Najeeb TM, Makhawi AM, et al. Ethnobotanical investigation on medicinal plants in Algoz area (South Kordofan), Sudan. J Ethnobiol Ethnomed. 2018;14:31.
58. Umar MB, Kabiru AY, Mann A OE. In vivo antihyperglycaemic activity of crude and partitioned fractions of selected medicinal plants. BIOMED Nat Appl Sci. 2021;01:43-56.
59. Xuan TD, Khanh TD. Chemistry and pharmacology of Bidens pilosa: an overview. J Pharm Investig. 2016;46:91-132.
60. Ajagun-Ogunleye MO, Tirwomwe M, Mitaki RN, Ejekwumadu JN, Kasozi KI, Pantoglou J, et al. Hypoglycemic and high dosage effects of Bidens pilosa in Type-1 diabetes mellitus. J Diabetes Mellit. 2015;05:146-54.
61. Ebenezer AM, Folasade OA, Senga KP. Antidiabetic effect of aqueous extract of ripe Carica papaya Linnaeus seed in alloxan-induced diabetic albino rats. J Diabetes Endocrinol. 2019;10:13-7.
62. Tsai TH, Wang GJ, Lin LC. Vasorelaxing alkaloids and flavonoids from Cassytha filiformis. J Nat Prod. 2008;71:289-91.
63. Adamu AA, Garba FN, Ahmed TM, Abubakar A. Pharmacognostic studies and elemental analysis of Cassytha filiformis Linn. J Pharmacogn Phyther. 2017;9:131-7.
64. Goboza M, Meyer M, Aboua YG, Oguntibeju OO. In vitro antidiabetic and antioxidant effects of different extracts of Catharanthus roseus and its indole alkaloid, vindoline. Molecules. 2020;25. https://doi.org/10.3390/molecules25235546.
65. Aloke C, Ibiam UA, Obasi NA, Orji OU, Ezeani NN, Aja PM, et al. Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund’s adjuvant-induced rheumatoid arthritis in rats. J Food Biochem. 2019;43:1-13.
66. Aloke C, Igwe ES, Obasi NA, Amu PA, Ogbonnia EC. Anti-diabetic effect of ethanol extract of Copaifera salikounda (HECKEL) against alloxan-induced diabetes in rats. Slov Vet Res. 2021;58:63-75.
67. Merchaoui M, Kthiri Z, Ben Jabeur M, Hamada W. Ethnobotanical and phytopharmacological notes on Cymbopogon citratus (DC.) Stapf. J New Sci. 2018;55:3642-52.
68. Garba HA, Mohammed A, Ibrahim MA, Shuaibu MN. Effect of lemongrass (Cymbopogon citratus Stapf) tea in a type 2 diabetes rat model. Clin Phytoscience. 2020;6:19.
69. Boye A, Amoateng P, Koffuor GA, Atsu Barku VY, Bawa EM, Anto OE. Antinociceptive and antioxidant activity of an aqueous root bark extract of Daniellia oliveri (Rolfe) Hutch. & Dalziel (Fam: Leguminosae (Fabaceae)) in ICR mice. J Appl Pharm Sci. 2013;3:36-45.
70. Temitope O, Fasusi O, Ogunmodede A, Thonda A, Oladejo B, Yusuf-Babatunde A, et al. Phytochemical composition and antimicrobial activity of Daniella oliveri extracts on selected clinical microorganisms. Int J Biochem Res Rev. 2016;14:1-13.
71. Fasina KA, Adesetan TO, Oseghale F, Egberongbe HO, Aghughu OO, Akpobome FA. Bacteriological and phytochemical assessment of Ficus asperifolia Linn. infusion. Biomed Res Int. 2020;2020.
72. Nwankwo IU, Ukaegbu-Obi KM. Preliminary phytochemical screening and antibacterial activity of two Nigerian medicinal plants (Ficus asperifolia and Terminalis catappa). J Med Plant Herb Ther Res. 2014;2:1-5.
73. Kifle ZD, Belayneh YM. Antidiabetic and anti-hyperlipidemic effects of the crude hydromethanol extract of Hagenia abyssinica (Rosaceae) leaves in streptozotocin-induced diabetic mice. Diabetes Metab Syndr Obes Targets Ther. 2020;13:4085-94.
74. Lee HJ, Wang SC, Lee SF, Wang CJ, Lee CH, Lee WC. Aqueous extract from Hibiscus sabdariffa linnaeus ameliorate diabetic nephropathy via regulating oxidative status and Akt/Bad/14-3-3γ in an experimental animal model. Evid Based Complement Altern Med. 2011;2011. https://doi.org/10.1093/ecam/nep181.
75. Jabeur I, Pereira E, Barros L, Calhelha RC, Soković M, Oliveira MBPP, et al. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Res Int. 2017;100:717-23.
76. Komoreng L, Thekisoe O, Lehasa S, Tiwani T, Mzizi N, Mokoena N, et al. An ethnobotanical survey of traditional medicinal plants used against lymphatic filariasis in South Africa. South African J Bot. 2017;111:12-6.
77. Polori KL, Mashele SS, Aremu AO. In vitro anti-diabetic effect and cytotoxicity of South African Ipomoea oblongata. South African J Bot. 2021;142:96-9.
78. Muhammad I, Alhassan A, Sule M, Idi A, Mohammed A, El- taalu A, et al. Anti-hyperglycemic activity of solvents extract of Khaya senegalensis stem bark in alloxan induced diabetic rats. J Adv Biol Biotechnol. 2016;6:1-8.
79. Celestine UA, Christopher GB, Innocent OO. Phytochemical profile of stem bark extracts of Khaya senegalensis by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. J Pharmacogn Phyther. 2017;9:35-43.
80. Mahmoud MF, El Ashry FEZZ, El Maraghy NN, Fahmy A. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm Biol. 2017;55:758-65.
81. Mbikay M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front Pharmacol. 2012;3.
82. Agnaniet H, Mbot EJ, Keita O, Fehrentz JA, Ankli A, Gallud A, et al. Antidiabetic potential of two medicinal plants used in Gabonese folk medicine. BMC Complement Altern Med. 2016;16:71.
83. Ibibia ET, Olabisi KN, Oluwagbemiga OS. Gas chromatography-mass spectrometric analysis of methanolic leaf extracts of Lannea kerstingii and Nauclea diderrichii, two medicinal plants used for the treatment of gastrointestinal tract infections. Asian J Pharm Clin Res. 2016;9:179-82.
84. Casanova LM, Da Silva D, Sola-Penna M, De Magalhães Camargo LM, De Moura Celestrini D, Tinoco LW, et al. Identification of chicoric acid as a hypoglycemic agent from Ocimum gratissimum leaf extract in a biomonitoring in vivo study. Fitoterapia. 2014;93:132-41.
85. Chinedu OG, Ngozi AK, Naomi AU, Daniel NA, Edith OC, Ekeleme-Egedigwe CA. Preliminary biochemical investigation of bioactive compounds and antibiofilm activity of Ocimum Gratissimum against food-borne microorganisms. Carpathian J Food Sci Technol. 2018;10:19-34.
86. Ibrahim MA, Habila JD, Koorbanally NA, Islam MS. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J Ethnopharmacol. 2016;183:103-11.
87. Abioye EO, Akinpelu DA, Aiyegoro OA, Adegboye MF, Oni MO, Okoh AI. Preliminary phytochemical screening and antibacterial properties of crude stem bark extracts and fractions of Parkia biglobosa (Jacq.). Molecules. 2013;18:8485-99.
88. Oyedemi SO, Eze K, Aiyegoro OA, Ibeh RC, Ikechukwu GC, Swain SS, et al. Computational, chemical profiling and biochemical evaluation of antidiabetic potential of Parkia biglobosa stem bark extract in type 2 model of rats. J Biomol Struct Dyn. 2021:1-14.
89. Ezeani NN, Ibiam UA, Orji OU, Igwenyi IO, Aloke C, Alum E, et al. Effects of aqueous and ethanol root extracts of Olax subscopioidea on inflammatory parameters in complete freund’s adjuvant-collagen type II induced arthritic albino rats. Pharmacogn J. 2019;11:16-25.
90. Akpojotor P, Ebomoyi MI. Effect of hydromethanolic extract of Rauvolfia vomitoria leaf on blood glucose, plasma insulin and histomorphology of the pancreas of streptozotocin-induced diabetic male wistar rats. J African Assoc Physiol Sci. 2021;9:40-7.
91. Okereke SC, Ijeh II, Arunsi UO. Determination of bioactive constituents of Rauwolfia vomitoria Afzel (Asofeyeje) roots using gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FT-IR). African J Pharm Pharmacol. 2017;11:25-31.
92. Yüce I, Agnaniet H, Morlock GE. New Antidiabetic and Free-Radical Scavenging Potential of Strictosamide in Sarcocephalus pobeguinii Ground Bark Extract via Effect-Directed Analysis. ACS Omega. 2019;4:5038-43.
93. Farombi EO, Owoeye O. Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. Int J Environ Res Public Health. 2011;8:2533-55.
94. Hannan JMA, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YHA. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells. J Endocrinol. 2006;189:127-36.
95. Kumar Bharti, Supriya Krishnan AK and AK. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther Adv Endocrinol Metab. 2018;9:81-100.
96. Zunjar V, Dash RP, Jivrajani M, Trivedi B, Nivsarkar M. Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn. leaves in busulfan induced thrombocytopenic Wistar rats. J Ethnopharmacol. 2016;181:20-5.
97. Putta S, Sastry Yarla N, Kumar Kilari E, Surekha C, Aliev G, Basavaraju Divakara M, et al. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr Top Med Chem. 2016;16:2532-42.
98. Aparna V, Dileep K V., Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80:434-9.
99. Ding L, Jin D, Chen X. Luteolin enhances insulin sensitivity via activation of PPARΓ transcriptional activity in adipocytes. J Nutr Biochem. 2010;21:941-7.
100. Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S, et al. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res. 2014;267:178-88.
101. McAnuff-Harding MA, Omoruyi FO, Asemota HN. Intestinal disaccharidases and some renal enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides). Life Sci. 2006;78:2595-600.
102. Hao HH, Shao ZM, Tang DQ, Lu Q, Chen X, Yin XX, et al. Preventive effects of rutin on the development of experimental diabetic nephropathy in rats. Life Sci. 2012;91:959-67.
103. Niture NT, Ansari AA, Naik SR. Anti-hyperglycemic activity of Rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol. 2014;52:720-7.
104. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res. 2005;51:117-23.
105. Stewart LK, Wang Z, Ribnicky D, Soileau JL, Cefalu WT, Gettys TW. Failure of dietary quercetin to alter the temporal progression of insulin resistance among tissues of C57BL/6J mice during the development of diet-induced obesity. Diabetologia. 2009;52:514-23.
106. Abo-Salem OM. Kaempferol attenuates the development of diabetic neuropathic pain in mice: possible anti-inflammatory and anti-oxidant mechanisms. Open Access Maced J Med Sci. 2014;2:424-30.
107. Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2015;20:198-209.
108. Vinayagam R, Xiao J, Xu B. An insight into anti-diabetic properties of dietary phytochemicals. Phytochem Rev. 2017;16:535-53.
109. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab. 2015;12:60.
110. Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törronen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem. 1999;47:2274-9.
111. Nirmala P, Ramanathan M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharmacol. 2011;654:75-9.
112. An G, Gallegos J, Morris ME. The bioflavonoid kaempferol is an Abcg2 substrate and inhibits Abcg2-mediated quercetin efflux. Drug Metab Dispos. 2011;39:426-32.
113. Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670:325-32.
114. Kreft S, Knapp M, Kreft I. Extraction of rutin from buckwheat (Fagopyrum esculentum moench) seeds and determination by capillary electrophoresis. J Agric Food Chem. 1999;47:4649-52.
115. Huang WY, Zhang HC, Liu WX, Li CY. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J Zhejiang Univ Sci B. 2012;13:94-102.
116. Neuhouser ML. Dietary flavonoids and cancer risk: Evidence from human population studies. Nutr Cancer. 2004;50:1-7.
117. Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49:3106-12.
118. Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer. 2007;121:2225-32.
119. Alinezhad H, Azimi R, Zare M, Ebrahimzadeh MA, Eslami S, Nabavi SF, et al. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. angustifolius. Int J Food Prop. 2013;16:1169-78.
120. Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol. 2010;127:457-62.
121. Patel OPS, Mishra A, Maurya R, Saini D, Pandey J, Taneja I, et al. Naturally Occurring Carbazole Alkaloids from Murraya koenigii as Potential Antidiabetic Agents. J Nat Prod. 2016;79:1276-84.
122. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, et al. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013;18:9770-84.
123. Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, Vadivel V. Antioxidant and Antidiabetic Properties of Condensed Tannins in Acetonic Extract of Selected Raw and Processed Indigenous Food Ingredients from Kenya. J Food Sci. 2011;76:560-7.
124. Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J Nutr. 2005;135:165-71.
125. Metwally NS, Mohamed AM, El Sharabasy FS. Chemical constituents of the Egyptian plant Anabasis articulata (Forssk) moq and its antidiabetic effects on rats with streptozotocininduced diabetic hepatopathy. J Appl Pharm Sci. 2012;2:54-65.
126. Zheng T, Shu G, Yang Z, Mo S, Zhao Y, Mei Z. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats. J Ethnopharmacol. 2012;139:814-21.
127. Shaw D, Graeme L, Pierre D, Elizabeth W, Kelvin C. Pharmacovigi-lance of herbal medicine. J Ethnopharmacol. 2012;140:513-8.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2023 Authors