Abstract
Multiple sclerosis (MS) is a serious neurological disease, the actual worldwide prevalence of which is estimated to be 2,8 million people (35,9 per 100,000). During the course of MS, various neurological symptoms and its complications result in raising patient disability, which range from skeletal muscles impairment, to losses in cognitive functions. Achieving control over course of MS progression appears to be crucial in its treatment. This enforces the need for recognizing novel predictive factors so as to allow prognosis of future remissions and/or progressions. Adiponectin, hormone secreted by adipose tissue, currently is considered as a possible candidate for such a biomarker. The aim of this review is to summarise present knowledge and to assess possible clinical usage.
According to collected data, adiponectin measurements in serum and cerebrospinal fluid appear to provide plausible and useful biomarkers in predicting the course of MS. Further studies are, however, needed, especially using non-invasive, but promising sources such as saliva.
References
1. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816.
2. Amato MP, Ponziani G. Quantification of impairment in MS: Discussion of the scales in use. Mult Scler. 1999;5(4):216-9.
3. Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385(9963):117.
4. Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020;21(4): 1219.
5. Kalkman HO. An Explanation for the Adiponectin Paradox. Pharmaceuticals (Basel). 2021;14(12).
6. Chudek J, Adamczak M, Karkoszka H, Budziński G, Ignacy W, Funahashi T, et al. Plasma adiponectin concentration before and after successful kidney transplantation. Transplant Proc. 2003;35(6): 2186-9.
7. Suh SH, Oh TR, Choi HS, Kim CS, Lee J, Oh YK, et al. Association of high serum adiponectin level with adverse cardiovascular outcomes and progression of coronary artery calcification in patients with pre-dialysis chronic kidney disease. Front Cardiovasc Med. 2022;8.
8. Schindler M, Pendzialek M, Grybel KJ, Seeling T, Gürke J, Fischer B, et al. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts. Hum Reprod. 2017;32(7):1382-92.
9. Shklyaev SS, Melnichenko GA, Volevodz NN, Falaleeva NA, Ivanov SA, Kaprin AD, et al. Adiponectin: a pleiotropic hormone with multifaceted roles. Probl Endokrinol (Mosk). 2021;67(6):98-112.
10. Peng YJ, Shen TL, Chen YS, Mersmann HJ, Liu BH, Ding ST. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. J Biomed Sci. 2018;25(1):1-13.
11. Kono M, Nagafuchi Y, Shoda H, Fujio K. The impact of obesity and a high-fat diet on clinical and immunological features in systemic lupus erythematosus. Nutrients. 2021;13(2):1-12.
12. Schovanek J, Krupka M, Cibickova L, Karhanova M, Reddy S, Kucerova V, et al. Adipocytokines in Graves’ orbitopathy and the effect of high-dose corticosteroids. Adipocyte. 2021;10(1):456.
13. Katsiougiannis S, Tenta R, Skopouli FN. Autoimmune epithelitis (Sjögren’s syndrome); the impact of metabolic status of glandular epithelial cells on auto-immunogenicity. J Autoimmun. 2019;104: 102335.
14. Szabo CE, Man OI, Istrate A, Kiss E, Catana A, Creț V, et al. Role of adiponectin and tumor necrosis factor-alpha in the pathogenesis and evolution of Type 1 diabetes mellitus in children and adolescents. Diagnostics. 2020;10(11).
15. Stroikova V, Fischer A, Bockstahler M, Müller AM, Katus HA, Kaya Z. Adiponectin deficiency has no effect in murine autoimmune myocarditis. Cytokine. 2019;116:139-49.
16. Cheng X, Folco EJ, Shimizu K, Libby P. Adiponectin Induces Pro-inflammatory Programs in Human Macrophages and CD4+ T Cells. J Biol Chem. 2012;287(44):36896-904.
17. Peake P, Shen Y. Factor H binds to the N-terminus of adiponectin and modulates complement activation. Biochem Biophys Res Commun. 2010;397(2):361-6.
18. Ye JJ, Bian X, Lim J, Medzhitov R. Adiponectin and related C1q/TNF-related proteins bind selectively to anionic phospholipids and sphingolipids. Proc Natl Acad Sci U S A. 2020;117(29):17381-8.
19. Devaraj S, Torok N, Dasu MR, Samols D, Jialal I. Adiponectin decreases C-reactive protein synthesis and secretion from endothelial cells: Evidence for an adipose tissue-vascular loop. Arterioscler Thromb Vasc Biol. 2008;28(7):1368-74.
20. Murayama MA, Chi HH, Matsuoka M, Ono T, Iwakura Y. The CTRP3-AdipoR2 Axis Regulates the Development of Experimental Autoimmune Encephalomyelitis by Suppressing Th17 Cell Differentiation. Front Immunol. 2021;12.
21. Penesova A, Vlcek M, Imrich R, Vernerova L, Marko A, Meskova M, et al. Hyperinsulinemia in newly diagnosed patients with multiple sclerosis. Metab Brain Dis. 2015;30(4):895-901.
22. Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB. Obesity and multiple sclerosis: A mendelian randomization study. PLoS Med. 2016;13(6).
23. Harroud A, Mitchell RE, Richardson TG, Morris JA, Forgetta V, Davey Smith G, et al. Childhood obesity and multiple sclerosis:
A mendelian randomization study. Mult Scler. 2021;27(14):2150-8.
24. Devorak J, Mokry LE, Morris JA, Forgetta V, Davey Smith G, Sawcer S, et al. Large differences in adiponectin levels have no clear effect on multiple sclerosis risk: A Mendelian randomization study. Mult Scler. 2017;23(11):1461-8.
25. Harroud A, Manousaki D, Butler-Laporte G, Mitchell RE, Davey Smith G, Richards JB, et al. The relative contributions of obesity, vitamin D, leptin, and adiponectin to multiple sclerosis risk: A Mendelian randomization mediation analysis. Mult Scler. 2021; 27(13):1994-2000.
26. Mokhtarzade M, Ranjbar R, Majdinasab N, Patel D, Molanouri Shamsi M. Effect of aerobic interval training on serum IL-10, TNFα, and adipokines levels in women with multiple sclerosis: possible relations with fatigue and quality of life. Endocrine. 2017;57(2): 262-71.
27. Majdinasab N, Motl RW, Mokhtarzade M, Zimmer P, Ranjbar R, Keytsman C, et al. Acute responses of cytokines and adipokines to aerobic exercise in relapsing vs. remitting women with multiple sclerosis. Complement Ther Clin Pract. 2018;31:295-301.
28. Yousefian M, Nemati R, Daryabor G, Gholijani N, Nikseresht A, Borhani-Haghighi A, et al. Gender-specific association of leptin and adiponectin genes with multiple sclerosis. Am J Med Sci. 2018;356(2): 159-67.
29. Piccio L, Cantoni C, Henderson JG, Hawiger D, Ramsbottom M, Mikesell R, et al. Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur J Immunol. 2013;43(8):2089-100.
30. Çoban A, Düzel B, Tüzün E, Tamam Y. Investigation of the prognostic value of adipokines in multiple sclerosis. Mult Scler Relat Disord. 2017;15:11-4.
31. Signoriello E, Lus G, Polito R, Casertano S, Scudiero O, Coletta M, et al. Adiponectin profile at baseline is correlated to progression and severity of multiple sclerosis. Eur J Neurol. 2019;26(2):348-55.
32. Düzel B, Tamam Y, Çoban A, Tüzün E. Adipokines in multiple sclerosis patients with and without optic neuritis as the first clinical presentation. Immunol Invest. 2019;48(2):190-7.
33. Keyhanian K, Saxena S, Gombolay G, Healy BC, Misra M, Chitnis T. Adipokines are associated with pediatric multiple sclerosis risk and course. Mult Scler Relat Disord. 2019;36.
34. Kvistad SS, Myhr KM, Holmøy T, Benth JŠ, Wergeland S, Beiske AG, et al. Serum levels of leptin and adiponectin are not associated with disease activity or treatment response in multiple sclerosis. J Neuroimmunol. 2018;323:73-7.
35. Natarajan R, Hagman S, Hämälainen M, Leppänen T, Dastidar P, Moilanen E, et al. Adipsin is associated with multiple sclerosis: A follow-up study of adipokines. Mult Scler Int. 2015;2015:1-9.
36. Baranowska-Bik A, Uchman D, Litwiniuk A, Kalisz M, Martyńska L, Baranowska B, et al. Peripheral levels of selected adipokines in patients with newly diagnosed multiple sclerosis. Endokrynol Pol. 2020;71(2):109-15.
37. Mezzaroba L, Simão ANC, Oliveira SR, Flauzino T, Alfieri DF, de Carvalho Jennings Pereira WL, et al. Antioxidant and anti-inflammatory diagnostic biomarkers in multiple sclerosis: A machine learning study. Mol Neurobiol. 2020;57(5):2167-78.
38. Signoriello E, Mallardo M, Nigro E, Polito R, Casertano S, Di Pietro A, et al. Adiponectin in cerebrospinal fluid from patients affected by multiple sclerosis is correlated with the progression and severity of disease. Mol Neurobiol. 2021;58(6):2663-70.
39. Mamali I, Roupas ND, Armeni AK, Theodoropoulou A, Markou KB, Georgopoulos NA. Measurement of salivary resistin, visfatin and adiponectin levels. Peptides. 2012;33(1):120-4.
40. Lehmann-Kalata A, Miechowicz I, Korybalska K, Swora-Cwynar E, Czepulis N, Łuczak J, et al. Salivary fingerprint of simple obesity. Cytokine. 2018;110:174-80.
41. Attlee A, Hasan H, AlQattan A, Sarhan N, Alshammari R, Ali S, et al. Relationship of salivary adipocytokines, diet quality, physical activity, and nutrition status in adult Emirati females in United Arab Emirates. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):40-6.
42. Zyśk B, Ostrowska L, Smarkusz-Zarzecka J. Salivary adipokine and cytokine levels as potential markers for the development of obesity and metabolic disorders. Int J Mol Sci. 2021;22(21).
43. Zheng X, Zhang F, Wang K, Zhang W, Li Y, Sun Y, et al. Smart biosensors and intelligent devices for salivary biomarker detection. TrAC Trends Anal Chem. 2021;140:116281.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2023 Authors