Development of standardization methods of gel with sapropel extract and their validation
PDF

Keywords

humic acids
validation
identification
gel
quantification
aqueous sapropel extract

Abstract

Humic acids (HA) are important natural compounds that are characterized by a wide range of biological activity and therapeutic impact on different pathological processes. Sapropels are natural healing resources that contain a large amount of HA. The pharma-ceutical market of Ukraine needs domestic drugs with dermatotropic action based on natural compounds that have a combined antibacterial, wound healing and anti-inflammatory activity, as well low toxicity.
The aims of the research: standardization of the gel under the conditional name "Saprogel" for use in medicine as a wound-healing and anti-inflammatory agent, development of methods for identification and quantification, as well as their validation.
A linear dependence between the concentration of the total mass fraction of HA on the mass of the sample of aqueous sapropel extract (ASE) with a correlation coefficient of 0.9985 (≥0.9981) was observed, while the angular coefficient of linear dependence (b) was found to be 1.02, with the free member of linear dependence (a) being – 1.66≤2.60. The obtained results show that the method is precise because the value of the relative confidence interval is less than the critical value for the convergence of the results: Δ%=1.27≤1.60 and the criterion of the insignificance of systematic error: δ=0.51. As a result of the quantitative analysis, we found that the total mass fraction of HA in the gel samples from the wind farm is 1.302%.

PDF

References

1. Borowy I. Road Traffic injuries: Social change and global development. Med Hist. 2013;57(1):108-38.

2. Jeong BY, Lee S, Lee JD. Safety and health at work. Workplace accidents and work-related illnesses of household waste collectors. Saf Health Work. 2016;7(2):138-42.

3. Vynnyk VS. Modern methods of treatment of purulent wounds. Sybirskoie Medicinskoie Obrazovanie. 2013;1:18-24.

4. Hilman А, Khardman D, Limberd L. Clinical farmacology by Hudman and Hilman. Moscow: Practika; 2006.

5. Strus O, Polovko N. The composition and technology development of the gel dermatotropic product with sapropel extract. WJPPS. 2020;9(3):209-24.

6. State Register of Medicinal Products of Ukraine: Information Fund. State Expert Center of the Ministry of Health of Ukraine. [http://www.drlz.kiev.ua/]

7. Compendium. Medicines. ATX-classification. [https://compendium.com.ua/use_atc/]

8. Swarbick J (ed). Encyclopedia of pharmaceutical technology. 3rd ed. New York: In-forma Healthcare USA; 2007:4372.

9. Gad SC. Pharmaceutical Manufacturing Handbook. Production and Processes. Hoboken: John Wiley & Sons; 2008. [https://www.uv.mx/personal/izcamacho/files/2012/02/Pharmaceutical-Manufacturing-Handbook-Production-and-Processes-Wiley-2008.pdf]

10. Van Rensburg CEJ. The antiinflammatory properties of humic substances: A mini review. Phytother Res. 2015;29(6):791-5.

11. Aeschbacher M, Graf C, Schwarzenbach RP, Sander M, Sander M. Antioxidant properties of humic substances. Environ Sci Technol. 2012;46(9):4916-25.

12. Zhao Y, Paderu P, Delmas G, Dolgov E, Lee MH, Senter M, et al. Carbohydrate-derived fulvic acid is a highly promising topical agent to enhance healing of wounds infected with drug-resistant pathogens. J Trauma Acute Care Surg. 2015;79:121-9.

13. Kala KJ, Prashob PKJ, Chandramohanakumar N. Humic substances as a potent biomaterials for therapeutic and drug delivery system – a review. Int J App Pharm. 2019;11(3):1-4.

14. Aykac A, Becer E, Okcanoglu TB, Guvenir M, Suer K, Vatansever S. The cytotoxic effects of humic acid on human breast cancer cells. Proceedings. 2018;2:1565.

15. Jurcsik I. Possibilities of applying humic acids in medicine (wound healing and cancer therapy). In: N. Senesi (ed). Humic Substances in the Global Environment. T.M. Milano. Amsterdam; London: Elsevier; 1994:1331-6.

16. Bernacchi F, Ponzanelli J, Minunni M, Falezza A, Loprieno N, Barale R. In vivo cytogenetic effects of natural humic acid. Mutagenesis. 1996;11(5):467-9.

17. Çalışır M, Akpınar A, Talmaç AC, Alpan AL, Göze OF. Humic acid enhances wound healing in the rat palate. Evid Based Complementary Altern Med. 2018;1783513:6.

18. Ji Y, Zhang A, Chen X, Che X, Zhou K, Wang Z. Sodium humate accelerates cutaneous wound healing by activating TGF-β/Smads signaling pathway in rats. Acta Pharm Sin B. 2016;6(2):132-40.

19. Van Rensburg CEJ, Naude PJW. Potassium humate inhibits the production of inflammatory cytokines and complement activation in vitro. Inflammation. 2009;32 (4):270-6.

20. Peña-Méndez EM, Havel J, Patočka J. Humic substances – compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. J Appl Biomed. 2005;3: 13-24.

21. Klöcking R, Sprössig M, Wutzler P, Thiel K-D, Helbig B. Antiviral wirksame Huminsäuren und huminsäureähnliche Polymere. Zeitschrift für Physiotherapie. 1983;33:95-101.

22. Klöcking HP, Dunkelberg H, Klöcking R. Substances of the humic acid type prevent U 937 cells from heat-induced arachidonic acid release. In: W. E. Müller (ed). Modern Aspects in Monitoring of Enviromental Pollution in the Sea. Erfurt: Akademie gemeinnütziger Wissenschlaften; 1997:156-8.

23. Klocking R, Helbig B. The antiviral potency of humic substances. Humic Substances – Linking Structure to Functions. Proceedings of the 13th International Humic Substances Society. Karlsruhe; 2006: 397-400.

24. Strus O, Polovko NP. The influence of „Saprogel” in the wound healing process on rats with a full-thickness wound model. Čes Slov Farm. 2020;69:75-82.

25. European Pharmacopoeia 10th Edition, Volume I. Council of Europe. Strasbourg Cedex, France; 2019:4370.

26. State Pharmacopoeia of Ukraine. 1st Edition. Tom 4. SC “Scientific and Expert Pharmacopoeial Center”. Kharkiv, Ukraine; 2011:536.

27. SSTU 7083: 2009. Organic and organo-mineral fertilizers. Methods for determination of humic acids. Kyiv; 2011:8.

28. Lichtenthaler HK, Wellburn AR. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11(5):591-2.

29. Gomes de Melo BA, Motta FL, Santana MHA. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng. 2016;62:967-74.

30. Kluˇcáková M. Characterization of pH-fractionated humic acids with respect to their dissociation behavior. Environ Sci Pollut Res. 2016;23:7722-31.

31. Tarasevich YI, Tryfonova MY, Dolenko SA, Aksenenko EV. Adsorption-based approach to determine the size and mass of humic acids molecules. Adsorpt Sci Technol. 2016;34:125-33.

32. Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810-32.

33. Kluˇcáková M, Vˇežníková, K. Micro-organization of humic acids in aqueous solutions. J Mol Struct. 2017;1144:33-40.

34. Fuentes M, Baigorri R, González-Gaitano G, García-Mina JM. New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. JSS. 2018;18(4):1389-99.

35. Lamar R, Olk DC, Mayhew L, Bloom PR. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. J AOAC Int. 2014;97(3):721-30.

36. Jarukas L, Ivanauskas L, Kasparaviciene G, Baranauskaite J, Marksa M, Bernatoniene J. Determination of organic compounds, fulvic acid, humic acid, and humin in peat and sapropel alkaline extracts. Molecules. 2021;26:2995.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2023 Authors

Downloads

Download data is not yet available.