Abstract
Humic acids (HA) are important natural compounds that are characterized by a wide range of biological activity and therapeutic impact on different pathological processes. Sapropels are natural healing resources that contain a large amount of HA. The pharma-ceutical market of Ukraine needs domestic drugs with dermatotropic action based on natural compounds that have a combined antibacterial, wound healing and anti-inflammatory activity, as well low toxicity.
The aims of the research: standardization of the gel under the conditional name "Saprogel" for use in medicine as a wound-healing and anti-inflammatory agent, development of methods for identification and quantification, as well as their validation.
A linear dependence between the concentration of the total mass fraction of HA on the mass of the sample of aqueous sapropel extract (ASE) with a correlation coefficient of 0.9985 (≥0.9981) was observed, while the angular coefficient of linear dependence (b) was found to be 1.02, with the free member of linear dependence (a) being – 1.66≤2.60. The obtained results show that the method is precise because the value of the relative confidence interval is less than the critical value for the convergence of the results: Δ%=1.27≤1.60 and the criterion of the insignificance of systematic error: δ=0.51. As a result of the quantitative analysis, we found that the total mass fraction of HA in the gel samples from the wind farm is 1.302%.
References
1. Borowy I. Road Traffic injuries: Social change and global development. Med Hist. 2013;57(1):108-38.
2. Jeong BY, Lee S, Lee JD. Safety and health at work. Workplace accidents and work-related illnesses of household waste collectors. Saf Health Work. 2016;7(2):138-42.
3. Vynnyk VS. Modern methods of treatment of purulent wounds. Sybirskoie Medicinskoie Obrazovanie. 2013;1:18-24.
4. Hilman А, Khardman D, Limberd L. Clinical farmacology by Hudman and Hilman. Moscow: Practika; 2006.
5. Strus O, Polovko N. The composition and technology development of the gel dermatotropic product with sapropel extract. WJPPS. 2020;9(3):209-24.
6. State Register of Medicinal Products of Ukraine: Information Fund. State Expert Center of the Ministry of Health of Ukraine. [http://www.drlz.kiev.ua/]
7. Compendium. Medicines. ATX-classification. [https://compendium.com.ua/use_atc/]
8. Swarbick J (ed). Encyclopedia of pharmaceutical technology. 3rd ed. New York: In-forma Healthcare USA; 2007:4372.
9. Gad SC. Pharmaceutical Manufacturing Handbook. Production and Processes. Hoboken: John Wiley & Sons; 2008. [https://www.uv.mx/personal/izcamacho/files/2012/02/Pharmaceutical-Manufacturing-Handbook-Production-and-Processes-Wiley-2008.pdf]
10. Van Rensburg CEJ. The antiinflammatory properties of humic substances: A mini review. Phytother Res. 2015;29(6):791-5.
11. Aeschbacher M, Graf C, Schwarzenbach RP, Sander M, Sander M. Antioxidant properties of humic substances. Environ Sci Technol. 2012;46(9):4916-25.
12. Zhao Y, Paderu P, Delmas G, Dolgov E, Lee MH, Senter M, et al. Carbohydrate-derived fulvic acid is a highly promising topical agent to enhance healing of wounds infected with drug-resistant pathogens. J Trauma Acute Care Surg. 2015;79:121-9.
13. Kala KJ, Prashob PKJ, Chandramohanakumar N. Humic substances as a potent biomaterials for therapeutic and drug delivery system – a review. Int J App Pharm. 2019;11(3):1-4.
14. Aykac A, Becer E, Okcanoglu TB, Guvenir M, Suer K, Vatansever S. The cytotoxic effects of humic acid on human breast cancer cells. Proceedings. 2018;2:1565.
15. Jurcsik I. Possibilities of applying humic acids in medicine (wound healing and cancer therapy). In: N. Senesi (ed). Humic Substances in the Global Environment. T.M. Milano. Amsterdam; London: Elsevier; 1994:1331-6.
16. Bernacchi F, Ponzanelli J, Minunni M, Falezza A, Loprieno N, Barale R. In vivo cytogenetic effects of natural humic acid. Mutagenesis. 1996;11(5):467-9.
17. Çalışır M, Akpınar A, Talmaç AC, Alpan AL, Göze OF. Humic acid enhances wound healing in the rat palate. Evid Based Complementary Altern Med. 2018;1783513:6.
18. Ji Y, Zhang A, Chen X, Che X, Zhou K, Wang Z. Sodium humate accelerates cutaneous wound healing by activating TGF-β/Smads signaling pathway in rats. Acta Pharm Sin B. 2016;6(2):132-40.
19. Van Rensburg CEJ, Naude PJW. Potassium humate inhibits the production of inflammatory cytokines and complement activation in vitro. Inflammation. 2009;32 (4):270-6.
20. Peña-Méndez EM, Havel J, Patočka J. Humic substances – compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. J Appl Biomed. 2005;3: 13-24.
21. Klöcking R, Sprössig M, Wutzler P, Thiel K-D, Helbig B. Antiviral wirksame Huminsäuren und huminsäureähnliche Polymere. Zeitschrift für Physiotherapie. 1983;33:95-101.
22. Klöcking HP, Dunkelberg H, Klöcking R. Substances of the humic acid type prevent U 937 cells from heat-induced arachidonic acid release. In: W. E. Müller (ed). Modern Aspects in Monitoring of Enviromental Pollution in the Sea. Erfurt: Akademie gemeinnütziger Wissenschlaften; 1997:156-8.
23. Klocking R, Helbig B. The antiviral potency of humic substances. Humic Substances – Linking Structure to Functions. Proceedings of the 13th International Humic Substances Society. Karlsruhe; 2006: 397-400.
24. Strus O, Polovko NP. The influence of „Saprogel” in the wound healing process on rats with a full-thickness wound model. Čes Slov Farm. 2020;69:75-82.
25. European Pharmacopoeia 10th Edition, Volume I. Council of Europe. Strasbourg Cedex, France; 2019:4370.
26. State Pharmacopoeia of Ukraine. 1st Edition. Tom 4. SC “Scientific and Expert Pharmacopoeial Center”. Kharkiv, Ukraine; 2011:536.
27. SSTU 7083: 2009. Organic and organo-mineral fertilizers. Methods for determination of humic acids. Kyiv; 2011:8.
28. Lichtenthaler HK, Wellburn AR. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11(5):591-2.
29. Gomes de Melo BA, Motta FL, Santana MHA. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng. 2016;62:967-74.
30. Kluˇcáková M. Characterization of pH-fractionated humic acids with respect to their dissociation behavior. Environ Sci Pollut Res. 2016;23:7722-31.
31. Tarasevich YI, Tryfonova MY, Dolenko SA, Aksenenko EV. Adsorption-based approach to determine the size and mass of humic acids molecules. Adsorpt Sci Technol. 2016;34:125-33.
32. Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810-32.
33. Kluˇcáková M, Vˇežníková, K. Micro-organization of humic acids in aqueous solutions. J Mol Struct. 2017;1144:33-40.
34. Fuentes M, Baigorri R, González-Gaitano G, García-Mina JM. New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. JSS. 2018;18(4):1389-99.
35. Lamar R, Olk DC, Mayhew L, Bloom PR. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. J AOAC Int. 2014;97(3):721-30.
36. Jarukas L, Ivanauskas L, Kasparaviciene G, Baranauskaite J, Marksa M, Bernatoniene J. Determination of organic compounds, fulvic acid, humic acid, and humin in peat and sapropel alkaline extracts. Molecules. 2021;26:2995.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2023 Authors