Abstract
Today, plant sprouts are one of the most important forms of functional foods (FOSHU – Food For Specified Health Use), in nutraceutical diets based on so-called “healthy food”. The health-promoting effects of sprouts are due to their rich chemical composition and high nutritional quality compared to standard crop raw materials. Recently, many scientific studies have pointed to the medicinal and therapeutic effects of chia seeds (Salvia hispanica), but there is still a lack of research on the composition and biological properties of chia sprouts. In addition to chia sprouts, chia microgreens (microleaves) are becoming prominent in the food industry. This paper reviews the literature data on research on chia sprouts and microgreens. In the work, the process of sprouting chia seeds to boost their nutraceutical properties by increasing their content of protein, dietary fiber, vitamins and mineral salts, is revealed. The review underlines the fact that sprouting contributes to the enhancement of antioxidant potential by increasing the production of polyphenolic compounds from the phenolic acid group and flavonoids. What is more, single studies noted in the study indicate the antimicrobial properties of chia sprout extracts against Gram-negative (Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial strains. The paper is the first comprehensive review of the latest scientific information on the comparison of chia: dry seeds, sprouted seeds, sprouts and microgreens.
References
1. Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, Giordano M, et al. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019;277:107-18.
2. Aziz A, Noreen S, Khalid W, Mubarik F, Niazi M khan, Koraqi H, et al. Extraction of bioactive compounds from different vegetable sprouts and their potential role in the formulation of functional foods against various disorders: A literature-based review. Molecules. 2022;27(21):7320.
3. Vella MN, Stratton LM, Sheeshka J, Duncan AM. Functional food awareness and perceptions in relation to information sources in older adults. Nutr J. 2014;13(1):44.
4. Sukhneet S, Passi SJ, Goyat J. Chia seed (Salvia hispanica L.) –A new age functional food. Int J Adv Technol Eng Sci. 2016;4:286-99.
5. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R. Role of nutraceuticals in human health. J Food Sci Technol. 2012;49(2): 173-83.
6. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6):1402S-1406S.
7. Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, et al. High-fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells. 2021; 10(11):3164.
8. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to mediterranean diet and health status: meta-analysis. BMJ. 2008;337(sep11 2):a1344-a1344.
9. Davis C, Bryan J, Hodgson J, Murphy K. Definition of the mediterranean diet: A literature review. Nutrients. 2015;7(11): 9139-53.
10. Trautwein EA, McKay S. The role of specific components of a plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients. 2020;12(9):2671.
11. Yu E, Malik VS, Hu FB. Cardiovascular disease prevention by diet modification. J Am Coll Cardiol. 2018;72(8):914-26.
12. Aloo SO, Ofosu FK, Kilonzi SM, Shabbir U, Oh DH. Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration. Nutrients. 2021;13(8):2882.
13. Ebert AW. Sprouts and microgreens – Novel food sources for healthy diets. Plants. 2022;11(4):571.
14. Mentella, Scaldaferri, Ricci, Gasbarrini, Miggiano. Cancer and mediterranean diet: A review. Nutrients. 2019;11(9):2059.
15. Chiriac ER, Chiţescu CL, Sandru C, Geană E-I, Lupoae M, Dobre M, et al. Comparative study of the bioactive properties and elemental composition of red clover (Trifolium pratense) and alfalfa (Medicago sativa) sprouts during germination. Appl Sci. 2020;10(20):7249.
16. Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A. Sprouted grains: A comprehensive review. Nutrients. 2019;11(2):421.
17. Kyriacou MC, Rouphael Y, Di Gioia F, Kyratzis A, Serio F, Renna M, et al. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci Technol. 2016;57:103-15.
18. Bermejo NF, Hoummadi G, Munné-Bosch S. β-Carotene biofortification of chia sprouts with plant growth regulators. Plant Physiol Biochem. 2021;168:398-409.
19. Commission Implementing Regulation (EU) on traceability requirements for sprouts and seeds intended for the production of sprouts; 2013.
20. American Association of Cereal Chemists. International Board; 2008.
21. Xiao Z, Lester GE, Luo Y, Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J Agric Food Chem. 2012;60(31):7644-51.
22. Mir SA, Shah MA, Mir MM. Microgreens: Production, shelf life, and bioactive components. Crit Rev Food Sci Nutr. 2017;57(12):2730-6.
23. Michell KA, Isweiri H, Newman SE, Bunning M, Bellows LL, Dinges MM, et al. Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. J Food Sci. 2020;85(4):926-35.
24. Abdallah MM. Seed sprouts, a pharaoh’s heritage to improve food quality. Arab Univ J Agric Sci. 2008;16(2):469-78.
25. Yilmaz HÖ, Ayhan NY, Meriç ÇS. Buckwheat: A useful food and its effects on human health. Curr Nutr Food Sci. 2020;16(1):29-34.
26. Gan RY, Lui WY, Wu K, Chan CL, Dai SH, Sui ZQ, et al. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci Technol. 2017;59:1-14.
27. Teodoro AJ. Bioactive compounds of food: Their role in the prevention and treatment of diseases. Oxid Med Cell Longev. 2019;2019:1-4.
28. Erba D, Angelino D, Marti A, Manini F, Faoro F, Morreale F, et al. Effect of sprouting on nutritional quality of pulses. Int J Food Sci Nutr. 2019;70(1):30-40.
29. Omary MB, Fong C, Rothschild J, Finney P. Review: Effects of germination on the nutritional profile of gluten-free cereals and pseudocereals: A Review. Cereal Chem J. 2012;89(1):1-14.
30. Thakur M, Bhattacharya S, Khosla PK, Puri S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants. 2019;12:1-12.
31. Treadwell DD, Hochmuth R, Landrum L, Laughlin W. Microgreens: A new specialty crop’, HS1164. Florida: Institute of Food and Agricultural Sciences, University of Florida; 2010.
32. Sikin AdM, Zoellner C, Rizvi SSH. Current intervention strategies for the microbial safety of sprouts. J Food Prot. 2013;76(12):2099-123.
33. Bermejo NF, Munné-Bosch S. Mixing chia seeds and sprouts at different developmental stages: A cost-effective way to improve antioxidant vitamin composition. Food Chem. 2023;405:134880.
34. Samuolienė G, Brazaitytė A, Viršilė A, Miliauskienė J, Vaštakaitė-Kairienė V, Duchovskis P. Nutrient levels in brassicaceae microgreens increase under tailored light-emitting diode spectra. Front Plant Sci. 2019;10.
35. Liu H, Kang Y, Zhao X, Liu Y, Zhang X, Zhang S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J Funct Foods. 2019;53:136-45.
36. Toro MT, Ortiz J, Becerra J, Zapata N, Fierro P, Illanes M, et al. Strategies of elicitation to enhance bioactive compound content in edible plant sprouts: A bibliometric study. Plants. 2021;10(12):2759.
37. Halder M, Sarkar S, Jha S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci. 2019;19(12):880-95.
38. Liu R, Zhang D, He X, Nirasawa S, Tatsumi E, Liu H. The relationship between antioxidant enzymes activity and mungbean sprouts growth during the germination of mungbean seeds treated by electrolyzed water. Plant Growth Regul. 2014;74(1):83-91.
39. Couée I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot. 2006;57(3):449-59.
40. Jeong H, Sung J, Yang J, Kim Y, Jeong HS, Lee J. Effect of sucrose on the functional composition and antioxidant capacity of buckwheat (Fagopyrum esculentum M.) sprouts. J Funct Foods. 2018;43:70-6.
41. Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S. Light signaling and UV‐B‐mediated plant growth regulation. J Integr Plant Biol. 2020 Sep 15;62(9):1270-92.
42. Paucar-Menacho LM, Martínez-Villaluenga C, Dueñas M, Frias J, Peñas E. Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. Int J Food Sci Technol. 2018;53(2):516-24.
43. Hassini I, Baenas N, Moreno DA, Carvajal M, Boughanmi N, Martinez Ballesta MDC. Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. J Sci Food Agric. 2017;97(8):2291-9.
44. Wei Y, Shohag MJI, Ying F, Yang X, Wu C, Wang Y. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability. Food Chem. 2013;138(2-3):1952-8.
45. Hendek Ertop M, Bektaş M. Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food Heal. 2018;159-65.
46. Elkhalifa AEO, Bernhardt R. Influence of grain germination on functional properties of sorghum flour. Food Chem. 2010;121(2):387-92.
47. Gómez-Favela MA, Gutiérrez-Dorado R, Cuevas-Rodríguez EO, Canizalez-Román VA, del Rosario León-Sicairos C, Milán-Carrillo J, et al. Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods Hum Nutr. 2017;72(4):345-52.
48. Calvo-Lerma J, Paz-Yépez C, Asensio-Grau A, Heredia A, Andrés A. Impact of processing and intestinal conditions on in vitro digestion of chia (Salvia hispanica) seeds and derivatives. Foods. 2020;9(3):290.
49. Perales-Sánchez JXK, Reyes-Moreno C, Gómez-Favela MA, Milán-Carrillo J, Cuevas-Rodríguez EO, Valdez-Ortiz A, et al. Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum Nutr. 2014;69(3):196-202.
50. Idowu AT, Olatunde OO, Adekoya AE, Idowu S. Germination: an alternative source to promote phytonutrients in edible seeds. Food Qual Saf. 2020;4(3):129-33.
51. Luo Y, Cheng J, Yan X, Zhang J, Zhang J. Germination of seeds subjected to temperature and water availability: implications for ecological restoration. Forests. 2022;13(11):1854.
52. Wang F, Wang H, Wang D, Fang F, Lai J, Wu T, et al. Isoflavone, γ-aminobutyric acid contents and antioxidant activities are significantly increased during germination of three Chinese soybean cultivars. J Funct Foods. 2015;14:596-604.
53. Mendoza-Sánchez M, Guevara-González RG, Castaño-Tostado E, Mercado-Silva EM, Acosta-Gallegos JA, Rocha-Guzmán NE, et al. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts. Food Chem. 2016;212:128-37.
54. Stefanello R, Viana BB, Goergen PCH, Neves LAS, Nunes UR. Germination of chia seeds submitted to saline stress. Brazilian J Biol. 2020;80(2):285-9.
55. Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation. J Integr Plant Biol. 2018;60(9):745-56.
56. Crèvecoeur M, Deltour R, Bronchart R. Effects of subminimal temperature on physiology and ultrastructure of Zea mays embryo during germination. Can J Bot. 1983;61(4):1117-25.
57. Vidal-Valverde C, Frias J, Sierra I, Blazquez I, Lambein F, Kuo Y-H. New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. Eur Food Res Technol. 2002;215(6):472-7.
58. Wanasundara P. Changes in flax (Linum usitatissmum) seed nitrogenous compounds during germination. Food Chem. 1999;65(3):289-95.
59. Świeca M. Potentially bioaccessible phenolics, antioxidant activity and nutritional quality of young buckwheat sprouts affected by elicitation and elicitation supported by phenylpropanoid pathway precursor feeding. Food Chem. 2016;192:625-32.
60. Mohd Ali N, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG. The promising future of chia, Salvia hispanica L. J Biomed Biotechnol. 2012;2012:171956.
61. Motyka S, Koc K, Ekiert H, Blicharska E, Czarnek K, Szopa A. The current state of knowledge on Salvia hispanica and Salviae hispanicae semen (Chia seeds). Molecules. 2022;27(4):1207.
62. Cahill JP. Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Econ Bot. 2003;57(4):604-18.
63. Jamboonsri W, Phillips TD, Geneve RL, Cahill JP, Hildebrand DF. Extending the range of an ancient crop, Salvia hispanica L. a new ω3 source. Genet Resour Crop Evol. 2012;59(2):171-8.
64. Lu Y, Yeap Foo L. Polyphenolics of Salvia – a review. Phytochemistry. 2002;59(2):117-40.
65. Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia seeds (Salvia hispanica L.): An overview – phytochemical profile, isolation methods, and application. Molecules. 2019;25(1):11.
66. da Silva BP, Anunciação PC, Matyelka JC da S, Della Lucia CM, Martino HSD, Pinheiro-Sant’Ana HM. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 2017;221:1709-16.
67. Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A, et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol. 2016;53(4):1750-8.
68. Grancieri M, Martino HSD, Gonzalez de Mejia E. Protein digests and pure peptides from chia seed prevented adipogenesis and inflammation by inhibiting PPARγ and NF-κB pathways in 3T3L-1 adipocytes. Nutrients. 2021;13(1):176.
69. Valdivia-López MÁ, Tecante A. Chia (Salvia hispanica). In: Advances in food and nutrition research. Elsevier Inc.; 2015:53-75.
70. Martínez Cruz O, Paredes López O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J Chromatogr A. 2014;1346:43-8.
71. Li X, He P, Hou Y, Chen S, Xiao Z, Zhan J, et al. Berberine inhibits the interleukin-1 beta-induced inflammatory response via MAPK downregulation in rat articular chondrocytes. Drug Dev Res. 2019;80(5):637-45.
72. Villanueva-Lazo A, Montserrat-de la Paz S, Grao-Cruces E, Pedroche J, Toscano R, Millan F, et al. Antioxidant and immunomodulatory properties of chia protein hydrolysates in primary human monocyte – macrophage plasticity. Foods. 2022;11(5):623.
73. Rossi SA, Oliva ME, Ferreira MR, Chicco A, Ferreira MR, Chicco A, et al. Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats. Br J Nutr. 2013;109(9):1617-27.
74. da Silva BP, Dias DM, de Castro Moreira ME, Toledo RCL, da Matta SLP, Lucia CM Della, et al. Chia seed shows good protein quality, hypoglycemic effect and improves the lipid profile and liver and intestinal morphology of wistar rats. Plant Foods Hum Nutr. 2016;71(3):225-30.
75. Fonte-Faria T, Citelli M, Atella GC, Raposo HF, Zago L, de Souza T, et al. Chia oil supplementation changes body composition and activates insulin signaling cascade in skeletal muscle tissue of obese animals. Nutrition. 2019;58:167-74.
76. Vuksan V, Whitham D, Sievenpiper JL, Jenkins AL, Rogovik AL, Bazinet RP, et al. Supplementation of conventional therapy with the novel grain salba (Salvia hispanica L.) Improves major and emerging cardiovascular risk factors in Type 2 diabetes. Diabetes Care. 2007;30(11):2804-10.
77. Toscano LT, da Silva CSO, Toscano LT, de Almeida AEM, da Cruz Santos A, Silva AS. Chia flour supplementation reduces blood pressure in hypertensive subjects. Plant Foods Hum Nutr. 2014;69(4):392-8.
78. Pająk P, Socha R, Broniek J, Królikowska K, Fortuna T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019;275:69-76.
79. Abdel-Aty AM, Elsayed AM, Salah HA, Bassuiny RI, Mohamed SA. Egyptian chia seeds (Salvia hispanica L.) during germination: Upgrading of phenolic profile, antioxidant, antibacterial properties and relevant enzymes activities. Food Sci Biotechnol. 2021;30(5):723-34.
80. Mlinarić S, Gvozdić V, Vuković A, Varga M, Vlašiček I, Cesar V, et al. The effect of light on antioxidant properties and metabolic profile of chia microgreens. Appl Sci. 2020;10(17):5731.
81. Nikmaram N, Dar B, Roohinejad S, Koubaa M, Barba FJ, Greiner R, et al. Recent advances in γ -aminobutyric acid (GABA) properties in pulses: an overview. J Sci Food Agric. 2017;97(9):2681-9.
82. Miyahira RF, Lopes J de O, Antunes AEC. The use of sprouts to improve the nutritional value of food products: A brief review. Plant Foods Hum Nutr. 2021;76(2):143-52.
83. Nieman D, Gillitt N, Jin F, Henson D, Kennerly K, Shanely RA, et al. Chia seed supplementation and disease risk factors in overweight women: A metabolomics investigation. J Altern Complement Med. 2012;18(7):700-8.
84. Pellegrini M, Lucas-Gonzalez R, Sayas-Barberá E, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M. Bioaccessibility of phenolic compounds and antioxidant capacity of chia (Salvia hispanica L.) seeds. Plant Foods Hum Nutr. 2018;73(1):47-53.
85. Reyes-Caudillo E, Tecante A, Valdivia M. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008;107:656-63.
86. Coelho Silveira M, Salas-Mellado M. Chemical characterization of chia (Salvia hispanica L.) for use in food products. J Food Nutr Res. 2014;2(5):263-9.
87. Fuxia J, Nieman DC, Sha W, Guoxiang X, Qiu Y, Wei J. Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women. Plant Foods Hum Nutr. 2012;67(2):105-10.
88. Gómez-Velázquez HDJ, Aparicio-Fernández X, Reynoso-Camacho R. Chia sprouts elicitation with salicylic acid and hydrogen peroxide to improve their phenolic content, antioxidant capacities In vitro and the antioxidant status in obese rats. Plant Foods Hum Nutr. 2021;76(3):363-70.
89. Paiva EP de, Torres SB, Sá FV da S, Nogueira NW, Freitas RMO de, Leite MDS. Light regime and temperature on seed germination in Salvia hispanica L. Acta Sci Agron. 2016;38(4):513.
90. Beltrán-Orozco M del C, Martínez-Olguín A, Robles-Ramírez M del C. Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Sci Biotechnol. 2020;29(6):751-7.
91. Shen C-Y, Jiang J-G, Yang L, Wang D-W, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol. 2017;174(11):1395-425.
92. Drake PMW, Szeto TH, Paul MJ, Teh AY-H, Ma JK-C. Recombinant biologic products versus nutraceuticals from plants – a regulatory choice? Br J Clin Pharmacol. 2017;83(1):82-7.
93. Barsby JP, Cowley JM, Leemaqz SY, Grieger JA, McKeating DR, Perkins AV, et al. Nutritional properties of selected superfood extracts and their potential health benefits. Peer J. 2021;9:e12525.
94. Oude Groeniger J, van Lenthe FJ, Beenackers MA, Kamphuis CBM. Does social distinction contribute to socioeconomic inequalities in diet: the case of ‘superfoods’ consumption. Int J Behav Nutr Phys Act. 2017;14(1):40.
95. Castellaneta A, Losito I, Losacco V, Leoni B, Santamaria P, Calvano CD, et al. HILIC‐ESI‐MS analysis of phosphatidic acid methyl esters artificially generated during lipid extraction from microgreen crops. J Mass Spectrom. 2021;56(10).
96. Castellaneta A, Losito I, Leoni B, Santamaria P, Calvano CD, Cataldi TRI. Glycerophospholipidomics of five edible oleaginous microgreens. J Agric Food Chem. 2022;70(7):2410-23.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2023 Authors