Betulinic acid and its ionic derivatives impaired growth of prostate cancer cells without induction of GRP78 and CHOP
PDF

Keywords

prostate cancer
cell viability
ethnicity
betulinic acid
GRP78
ER stress

Abstract

Prostate cancer (PCa) is the most common invasive malignancy for men in the USA. The incidence and mortality rates of PCa are significantly higher among African American men, as compared to those in Caucasian men. Betulinic acid (BA) is a penta-cyclic triterpenoid that is often found in the bark of several species of plants. It possesses a variety of biological activities, including anti-cancer activities. We examined the cytotoxic effects and endoplasmic reticulum (ER) stress induced by BA and its ionic derivatives with PCa cells derived from African Americans and Caucasian men. 
The viability of all PCa cells was reduced by the BA compounds, and the cytotoxicity of these BA compounds was independent of ethnicity and androgen dependency. The BA compounds induced modest effects on ER stress proteins when compared with ER stress inducers, tunicamycin and thapsigargin. The induction of glucose regulated protein 78 (GRP78) was largely correlated with the expression of C/EBP homologous protein (CHOP) and cleaved poly [ADP-ribose] polymerase (PARP)/caspase-3 in the PCa cells. In summary, our data demonstrated that BA compounds impaired the growth of PCa cells regardless of ethnicity – through GRP78- and CHOP-independent pathways.

PDF

References

1. Kumar S, Singh R, Malik S, Manne U, Mishra M. Prostate cancer health disparities: An immuno-biological perspective. Cancer Lett. 2018;414:153-65. Review match

2. Saraon P, Drabovich AP, Jarvi KA, Diamandis EP. Mechanisms of androgen-independent prostate cancer. EJIFCC. 2014;25(1):42-54.

3. Smith ZL, Eggener SE, Murphy AB. African-American prostate cancer disparities. Curr Urol Rep. 2017;18(10):81. Review match

4. Evans S, Metcalfe C, Ibrahim F, Persad R, Ben-Shlomo Y. Investigating black-white differences in prostate cancer prognosis: A systematic review and meta-analysis. Int J Cancer. 2008;123(2):430-5. Review match

5. Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: Expanding the framework of the genomics of human traits and disease. Public Health Genom. 2015;18(1):40-51. Review match

6. Ali-Seyed M, Jantan I, Vijayaraghavan K, Bukhari SN. Betulinic acid: Recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem Biol Drug Des. 2016;87(4):517-36. Review match

7. Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J. Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev. 2019;18(3):929-51. Review match

8. Jäger S, Winkler K, Pfüller U, Scheffler A. Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Med. 2007;73(02):157-62. Review match

9. Zhao H, Jones CL, Cowins JV. Lipase dissolution and stabilization in ether-functionalized ionic liquids. Green Chem. 2009;11(8):1128-38. Review match

10. Yogeeswari P, Sriram D. Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem. 2005;12(6):657-66. Review match

11. Baglin I, Mitaine-Offer A-C, Nour M, Tan K, Cave C, Lacaille-Dubois M-A. A review of natural and modified betulinic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents. Mini Rev Med Chem. 2003;3(6):525-39. Review match

12. Suresh C, Zhao H, Gumbs A, Chetty CS, Bose HS. New ionic derivatives of betulinic acid as highly potent anti-cancer agents. Bioorg Med Chem Lett. 2012;22(4):1734-8. Review match

13. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67(8):3496-9.

14. Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients. 2018;10(8). Review match

15. Cai Y, Zheng Y, Gu J, Wang S, Wang N, Yang B, et al. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis. 2018;9(6):636. Review match

16. Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, et al. The LNCaP cell line-a new model for studies on human prostatic carcinoma. Prog Clin Biol Res. 1980;37:115-32. 17. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978;21(3):274-81. Review match

17. Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett. 2006;580(9):2294-300. Review match

18. Kaighn M, Narayan KS, Ohnuki Y, Lechner J, Jones L. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investig Urol. 1979;17(1):16-23.

19. Koochekpour S, Maresh GA, Katner A, Parker-Johnson K, Lee TJ, Hebert FE, et al. Establishment and characterization of a primary androgen-responsive African-American prostate cancer cell line, E006AA. Prostate. 2004;60(2):141-52. Review match

20. Koochekpour S, Willard SS, Shourideh M, Ali S, Liu C, Azabdaftari G, 22. et al. Establishment and characterization of a highly tumorigenic African American prostate cancer cell line, E006AA-hT. Int J Biol Sci. 2014;10(8):834-45. Review match

21. Theodore S, Sharp S, Zhou J, Turner T, Li H, Miki J, et al. Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. Int J Oncol. 2010;37(6):1477-82. Review match

22. Theodore S, Sharp S, Zhou J, Turner T, Li H, Miki J, et al. Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. Int J Oncol. 2010;37(6):1477-82.

23. Phillips J, Phillips I, Enya B, Zhao H, Nitta T. Effect of betulinic acid and its ionic derivatives on M-MuLV replication. Biochem Biophys Res Commun. 2018;500(2):365-9. Review match

24. Pozarowska D, Pozarowski P. Benzalkonium chloride (BAK) induces apoptosis or necrosis, but has no major influence on the cell cycle of Jurkat cells. Folia Histochem Cytobiol. 2011;49(2):225-30. Review match

25. Choi SM, Roh TH, Lim DS, Kacew S, Kim HS, Lee BM. Risk assessment of benzalkonium chloride in cosmetic products. J Toxicol Environ Health B Crit Rev. 2018;21(1):8-23. Review match

26. Lou H, Li H, Zhang S, Lu H, Chen Q. A review on preparation of betulinic acid and its biological activities. Molecules. 2021;26(18).

27. Jiang W, Li X, Dong S, Zhou W. Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother. 2021;142:111990. Review match

28. Shin J, Lee HJ, Jung DB, Jung JH, Lee HJ, Lee EO, et al. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One. 2011;6(6):e21492. Review match

29. Chintharlapalli S, Papineni S, Ramaiah SK, Safe S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res. 2007;67(6):2816-23. Review match

30. Shankar E, Zhang A, Franco D, Gupta S. Betulinic acid-mediated apoptosis in human prostate cancer ells involves p53 and nuclear factor-kappa B (NF-kappaB) pathways. Molecules. 2017;22(2). Review match

31. Kessler JH, Mullauer FB, de Roo GM, Medema JP. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett. 2007;251(1):132-45. Review match

32. Rabi T, Shukla S, Gupta S. Betulinic acid suppresses constitutive and TNFalpha-induced NF-kappaB activation and induces apoptosis in human prostate carcinoma PC-3 cells. Mol Carcinog. 2008;47(12):964-73. Review match

33. Reiner T, Parrondo R, de Las Pozas A, Palenzuela D, Perez-Stable C. Betulinic acid selectively increases protein degradation and enhances prostate cancer-specific apoptosis: possible role for inhibition of deubiquitinase activity. PLoS One. 2013;8(2):e56234. Review match

34. Badal S, Aiken W, Morrison B, Valentine H, Bryan S, Gachii A, et al. Disparities in prostate cancer incidence and mortality rates: Solvable or not? Prostate. 2020;80(1):3-16. Review match

35. Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 2018;9:3083. Review match

36. Lo WL, Hsu TI, Yang WB, Kao TJ, Wu MH, Huang YN, et al. Betulinic acid-mediated tuning of PERK/CHOP signaling by Sp1 inhibition as a Novel Therapeutic Strategy for Glioblastoma. Cancers (Basel). 2020;12(4). Review match

37. Miyake H, Hara I, Arakawa S, Kamidono S. Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J Cell Biochem. 2000;77(3):396-408.

38. Kim SJ, Quan HY, Jeong KJ, Kim DY, Kim G, Jo HK, et al. Beneficial effect of betulinic acid on hyperglycemia via suppression of hepatic glucose production. J Agric Food Chem. 2014;62(2):434-42. Review match

39. De Saint Jean M, Brignole F, Bringuier AF, Bauchet A, Feldmann G, Baudouin C. Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells. Invest Ophthalmol Vis Sci. 1999;40(3):619-30.

40. Smukste I, Bhalala O, Persico M, Stockwell BR. Using small molecules to overcome drug resistance induced by a viral oncogene. Cancer Cell. 2006;9(2):133-46. Review match

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2023 Authors

Downloads

Download data is not yet available.