Abstract
Eight drugs blocking beta-adrenergic receptors activity (acebutolol, alprenolol, atenolol, oxprenolol, labetalol, metoprolol, propranolol and sotalol) were investigated through the use of the thin-layer technique with its mobile phase containing surfactant. Assessment of the effect of surfactant presence and 1-propanol concentration in the mobile phase on the retention and separation of investigated solutes was then carried out wherein the effect of the surfactant concentration on the zone shape properties (asymmetry and tailing coefficient) was investigated. The method was applied for the quantitative analysis of the chosen solutes, and the LOD and LOQ values of chosen were determined. These were as follows: acebutolol – 1.11 and 3.36 μg/spot, metoprolol 1.45 μg/spot, 4.4 μg/spot. The chosen system is environmentally friendly due to using silica gel plates and only 5% of propanol in water.References
1. Wachter SB, Gilbert EM. Beta-adrenergic receptors, from their discovery and characterisation through their manipulation to beneficial clinical application. Cardiology. 2012;122(2):104-12. Review match
2. Davies CJ. Chromatography of β-adrenergic blocking agents. J Chromatogr Biome Appl. 1990;531:131-80.
3. Zejc A, Gorczyca M. Chemia leków. Second edition Warszawa: PZWL; 2002:247-62.
4. Martinez V, Maguregui MI, Jimenez RM, Alonzo RM. Determination of the pKA values of beta-blockers by automated potentiometric titration. J Pharm Biomed Anal. 2000;23(2/3):459-68.
5. Saleem K, Ali I, Kulsum U, Aboul-Enein HY. Recent developments in HPLC analysis of β-blockers in biological Samples. J Chromatogr Sci. 2013;51:807-18. Review match
6. Cheng J-Q, Liu T, Nie X-M, Chen F-M, Wang C-S, Zhang F. Analysis of 27 β-blockers and metabolites in milk powder by High Performance Liquid Chromatography coupled to Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules. 2019;24:820-42. Review match
7. Silva Gracia M, Köppl A, Unholzer S, Haen E. Development and validation of an HPLC-UV method for the simultaneous determination of the antipsychotic’s clozapine, olanzapine and quetiapine, several beta‐blockers and their metabolites. Biomed Chromatogr. 2017;31:e3968. Review match
8. Gumieniczek A, Berecka A. Thin layer chromatography in drug analysis. Boca Raton: CRC Press; 2013:527-48.
9. Ogrodowczyk M, Marciniec B. Comparative analysis of selected β-blockers. Acta Pol Pharm Drug Res. 2013;70:779-86.
10. Krzek J, Kwiecień A. Application of densitometry for determination of beta-adrenergic-blocking agents in pharmaceutical preparations. J Planar Chromatogr. 2005;18:308-13. Review match
11. Gallegos A, Peavy T, Dixon R, Isseroff RR. Development of a novel ion-pairing UPLC method with cation-exchange solid-phase extraction for determination of free timolol in human plasma. J Chromatogr B. 2018;1086:228-35. Review match
12. Ruiz-Angel MJ, Carda-Broch S, Garcia-Alvarez-Coque MC. High submicellar liquid chromatography. Sep Purif Rev. 2014;43:124-54. Review match
13. Peris-García E, Ruiz-Angela MJ, Carda-Broch S, García-Alvarez-Coque MC. Analysis of basic drugs by liquid chromatography with environmentally friendly mobile phases in pharmaceutical formulations. Microchem J. 2017;134:202-10. Review match
14. Ruiz-Angela MJ, Pous-Torres S, Carda-Broch S, García-Alvarez-Coque MC. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases. J Chromatogr A. 2014;1344:76-82. Review match
15. Rodenas-Montano J, Ortiz-Bolsico C, Ruiz-Angel MJ, García-Alvarez-Coque MC. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab®: Separation of basic compounds in urine samples. J Chromatogr A. 2014;1344:31-41. Review match
16. Peris-Garcia E, Ortiz-Bolsico C, Baeza-Baeza JJ, Garcia-Alvarez Coque MC. Isocratic and gradient elution in micellar liquid chromatography with Brij-35. J Sep Sci. 2015;38:2059-67. Review match
17. Sumina EG, Shtykov SN, Tyurina SV. Surfactants in thin-layer chromatography. J Anal Chem. 2003;58:720-30.
18. Subuddhi U, Mishra AK. Micellization of bile salts in aqueous medium: a fluorescence study. Colloids Surf B Biointerfaces. 2007;57:102-7. Review match
19. Nurunnabi M, Zehedina K, Revuri V, Nafiujjaman M, Cha S, Cho S, Huh KM, et al. Design and strategies for bile acid mediated therapy and imaging. RSC Adv. 2016;6:73986-4002. Review match
20. [www.sigmaaldrich.com/deepweb/asseste/sigmaaldrich/product/documents/256/387/detergent-selection-guide.pdf]
21. Madenci D, Egelhaaf SU. Self-assembly in aqueous bile salt solutions. Curr Opin Colloid Interface Sci. 2010;15:109-15. Review match
22. Matsuoka K, Suzuki M, Honda C, Endo K, Moroi Y. Micellization of conjugated chenodeoxy- and ursodeoxycholates and ssolubilisation of cholesterol into their micelles: comparison with other four conjugated bile salt species. Chem Phys Lipids. 2006;139:1-10. Review match
23. Matsuoka K, Moroi Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part I). Biochim Biophys Acta. 2002;1580:189-99. Review match
24. Maslova VA, Kiselev MA. Structure of sodium cholate micelles. Crystall Rep. 2018;63:472-5.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2023 Authors