Abstract
Atrial fibrillation (AF) is the most common supraventricular arrhythmia. Despite significant advances in its treatment, it still remains one of the leading causes of cardiovascular morbidity and mortality. In the last two decades, pulmonary vein isolation (PVI) was developed as the most effective treatment option. The reported effectiveness of a single ablation procedure ranges from 40% to 69% with single, and up to 88% with repeated procedures, with acceptable safety profile. The PubMed database was searched, using terms including ‘atrial fibrillation ablation’, ‘pulmonary vein isolation’, ‘computed tomography’, ‘pulmonary vein anatomy’ and ‘ovality index’. Papers were reviewed for relevance and scientific merit. Different imaging techniques are used for pre-procedural assessment of left atrial (LA) anatomy, of which computed tomography (CT) is the most common. It allows assessing pulmonary vein (PV) anatomy, the LA wall thickness in different regions and the left atrial appendage (LAA) anatomy, together with excluding the presence of intracardiac thrombi. Pre-procedural PVs imaging is important regardless of the selected ablation technique, however, cryoballoon (CB) ablation seems to be particularly anatomy-dependent. Additionally, CT also permits assessment of several PVs characteristics (geometry, dimensions, angulations, the ostium area, orientation and ovality index (OI), which are essential for the patients’ qualification and designing the strategy of AF ablation. In this paper, we have reviewed the role of CT imaging in patients undergoing ablation procedure due to recurrent/symptomatic atrial fibrillation. Moreover, we discussed the relevant literature.References
1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129:837-47.
2. Malhi N, Hawkins NM, Andrage JG, Krahn AD, Deyell MW. Catheter ablation of atrial fibrillation in heart failure with reduced ejection fraction. J Cardiovasc Electrophysiol. 2018;29:1049-58.
3. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42:373-498.
4. Kuck KH, Brugada J, Furnkranz A, Metzner A, Ouyang F, Chun KR, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374:2235-45.
5. Su WW, Reddy VY, Bhasin K, Champagne J, Sangrigoli RM, Braegelmann KM, et al. Cryoballoon ablation of pulmonary veins for persistent atrial fibrillation: Results from the multicenter STOP Persistent AF trial. Heart Rhythm. 2020;17(11):1841-7.
6. Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Poole JE, et al. CABANA Investigators. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;21:1261-74.
7. Turagam MK, Garg J, Whang W, Sartori S, Koruth JS, Miller MA, et al. Catheter ablation of atrial fibrillation in patients with heart failure: a meta‐analysis of randomized controlled trials. Ann Intern Med. 2019;170:41-50.
8. Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A, et al. EAST‐AFNET 4 Trial Investigators. Early rhythm‐control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383:1305-16.
9. Wazni OM, Dandamudi G, Sood N, Hoyt R, Tyler J, Durrani S, et al. STOP AF First Trial Investigators. Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2021;384:316-24.
10. Andrade JG, Wells GA, Deyell MW, Bennett M, Essebag V, Champagne J, et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021;384:305-15.
11. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, et al. Ablation Circulation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation. 2016;133:1637-44.
12. Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA, Voskoboinik A, et al. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA‐MRI study. J Am Coll Cardiol. 2017;70:1949-61.
13. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, et al. CASTLE‐AF Investigators. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417-27.
14. Kuniss M, Pavlovic N, Velagic V, Hermida JS, Healey S, Arena G, et al. Cryoballoon ablation vs. antiarrhythmic drugs: first-line therapy for patients with paroxysmal atrial fibrillation. Europace. 2021;23(7):1033-41.
15. Steinberg C, Champagne J, Deyell MW, Dubuc M, Leong-Sit P, Calkins H, et al. CIRCA-DOSE Study Investigators. Prevalence and outcome of early recurrence of atrial tachyarrhythmias in the cryoballoon vs irrigated radiofrequency catheter ablation (CIRCA-DOSE) study. Heart Rhythm. 2021;18(9):1463-70.
16. Hayashi T, Murakami M, Saito S, Iwasaki K. Characteristics of anatomical difficulty for cryoballoon ablation: insights from CT. Open Heart. 2022;9(1):e001724.
17. Thai WE, Wai B, Truong QA. Preprocedural imaging for patients with atrial fibrillation and heart failure. Curr Cardiol Rep. 2012; 14:584-92.
18. Angulo Hervias E, Guillén Subirán ME, Yagüe Romeo D, Castán Senar A, Seral Moral P, Núñez Motilva ME. Multidetector computed tomography in planning the treatment of atrial fibrillation. Radiologia (Engl Ed). 2020;62(2):148-59.
19. Sandhu A, Zipse MM, Borne RT, Aleong RG, Tompkins C, Schuller J, et al. Esophageal position, measured luminal temperatures, and risk of atrioesophageal fistula with atrial fibrillation ablation. Pacing Clin Electrophysiol. 2019;42(4):458-63.
20. Kapur S, Barbhaiya C, Deneke T, Michaud GF. Esophageal injury and atrioesophageal fistula caused by ablation for atrial fibrillation. Circulation. 2017;136(13):1247-55.
21. Lemola K, Sneider M, Desjardins B, Case I, Han J, Good E, at al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation. 2004;110(24):3655-60.
22. Tsao HM, Wu MH, Higa S, Lee KT, Tai CT, Hsu NW, at al. Anatomic relationship of the esophagus and left atrium: implication for catheter ablation of atrial fibrillation. Chest. 2005;128(4):2581-7.
23. Starek Z, Lehar F, Jez J, Scurek M, Wolf J, Kulik T, Zbankova A. Esophageal positions relative to the left atrium; data from 293 patients before catheter ablation of atrial fibrillation. Indian Heart J. 2018;70(1):37-44.
24. Narui R, Tokuda M, Matsushima M, Isogai R, Tokutake K, Yokoyama K, et al. Incidence and factors associated with the occurrence of pulmonary vein narrowing after cryoballoon ablation. Circ Arrhythm Electrophysiol. 2017;10(6):e004588.
25. Matsuda J, Miyazaki S, Nakamura H, Taniguchi H, Kajiyama T, Hachiya H, et al. Pulmonary vein stenosis after second-generation cryoballoon ablation. J Cardiovasc Electrophysiol. 2017;28(3):298-303.
26. Tokutake K, Tokuda M, Yamashita S, Sato H, Ikewaki H, Okajima E, et al. Anatomical and procedural factors of severe pulmonary vein stenosis after cryoballoon pulmonary vein ablation. JACC Clin Electrophysiol. 2019;5(11):1303-15.
27. Beinart R, Abbara S, Blum A, Ferencik M, Heist K, Ruskin J, et al. Left atrial wall thickness variability measured by CT scans in patients undergoing pulmonary vein isolation. J Cardiovasc Electrophysiol. 2011;22(11):1232-6.
28. Hof I, Chilukuri K, Arbab-Zadeh A, Scherr D, Dalal D, Nazarian S, et al. Does left atrial volume and pulmonary venous anatomy predict the outcome of catheter ablation of atrial fibrillation? J Cardiovasc Electrophysiol. 2009;20:1005-10.
29. Dorenkamp M, Sohns C, Vollmann D, Lüthje L, Seegers J, Wachter R, et al. Detection of left atrial thrombus during routine diagnostics work-up prior to pulmonary vein isolation for atrial fibrillation: Role of transesophageal echocardiography and multi-detector computed tomography. Int J Cardiol. 2013;163:26-33.
30. Mosleh W, Sheikh A, Said Z, Ahmed MA, Gadde S, Shah T, et al. The use of cardiac-CT alone to exclude left atrial thrombus before atrial fibrillation ablation: Efficiency, safety and cost analysis. Pacing Clin Electrophysiol. 2018;41(7):727-33.
31. Hong SJ, Kim JY, Kim JB, Sung JH, Wook Kim D, Uhm JS, et al. Multidetector computed tomography may be an adequate screening test to reduce periprocedural stroke in atrial fibrillation ablation: a multicenter propensity – matched analysis. Heart Rhythm. 2014;11(5): 763-70.
32. Bilchick KC, Mealor A, Gonzalez J, Norton P, Zhuo D, Mason P, et al. Effectiveness of integrating delayed computed tomography angiography imaging for left atrial appendage thrombus exclusion into the care of patients undergoing ablation of atrial fibrillation. Heart Rhythm. 2016;13(1):12-9.
33. Kottmaier M, Jilek C, Berglar S, Reents T, Bourier F, Semmler V, et al. Exclusion of left atrial thrombus by dual-source cardiac computed tomography prior to catheter ablation for atrial fibrillation. Clin Res Cardiol. 2019;108(2):150-6.
34. Zhai Z, Tang M, Zhang S, Fang P, Jia Y, Feng T, Wang J. Transoeso-phageal echocardiography prior to catheter ablation could be avoided in atrial fibrillation patients with a low risk of stroke and without filling defects in the late-phase MDCT scan: A retrospective analysis of 783 patients. Eur Radiol. 2018;28(5):1835-40.
35. Pathan F, Hecht H, Narula J, Marwick TH. Roles of transechophageal echocardiogaphy and cardiac computed tomography for evaluation of left atrial thrombus and associated pathology: A review and critical analysis. JACC Cardiovasc Imaging. 2018;11(4):616-27.
36. Khurram IM, Dewire J, Mager M, Maqbool F, Zimmerman SL, Zipunnikov V, et al. Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm. 2013;10(12):1843-9.
37. Lee Y, Park HC, Lee Y, Kim SG. Comparison of morphologic features and flow velocity of the left atrial appendage among patients with atrial fibrillation alone, transient ischemic attack, and cardioembolic stroke. Am J Cardiol. 2017;119(10):1596-604.
38. Wu L, Liang E, Fan S, Zheng L, Du Z, Liu S, et al. Relation of left atrial appendage morphology determined by computed tomography to prior stroke or to increased risk of stroke in patients with atrial fibrillation. Am J Cardiol. 2019;123(8):1283-6.
39. Nedios S, Kornej J, Koutalas E, Bertagnolli L, Kosiuk J, Rolf S, et al. Left atrial appendage morphology and thromboembolic risk after catheter ablation for atrial fibrillation. Heart Rhythm. 2014;11(12):2239-46.
40. Zheng GA, Lin CY, Weng L, Chen JD. Left atrial appendage volume is a valuable predictor of atrial fibrillation recurrence after radiofrequency catheter ablation. Zhonghua Xin Xue Guan Bing Za Zhi. 2017;45(11):924-9.
41. Du W, Dai M, Wang M, Gong Q, Ye TQ, Wang H, Luo CD. Large left atrial appendage predicts the ablation outcome in hypertensive patients with atrial fibrillation. J Electrocardiol. 2020;63:139-44.
42. Patel SN, French A, Mathias H, Lyen S, Hamilton MC, Manghat NE. Presence of left atrial diverticula, accessory appendages, and normal variant pulmonary venous anatomy diagnosed using MDCT and adverse outcomes following radiofrequency catheter ablation therapy in patients with drug-refractory atrial fibrillation: an exploratory study. Clin Radiol. 2013;68(8):762-9.
43. Demir GG, Güneş HM, Seker M, Savur Ü, Güler GB, Güler E, et al. Is the presence of left atrial diverticulum associated with recurrence in patients undergoing catheter ablation for atrial fibrillation? Arch Med Sci Atheroscler Dis. 2019;11(4):25-31.
44. Peng LQ, Yu JQ, Yang ZG, Wu D, Xu JJ, Chu ZG, et al. Left atrial diverticula in patients referred for radiofrequency ablation of atrial fibrillation: assessment of prevalence and morphologic characteristics by dual-source computed tomography. Circ Arrhythm Electrophysiol. 2012;5(2):345-50.
45. Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38(17): 1294-302.
46. Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57(17):1745-51.
47. Kim TH, Park J, Park JK, Uhm JS, Joung B, Lee MH, Pak HN. Pericardial fat volume is associated with clinical recurrence after catheter ablation for persistent atrial fibrillation, but not paroxysmal atrial fibrillation: an analysis of over 600-patients. Int J Cardiol. 2014;176(3):841-6.
48. Kosehan D, Akin K, Koktener A, Cakir B, Aktas A, Teksam M. Interatrial shunt: diagnosis of patent foramen ovale and atrial septal defect with 64-row coronary computed tomography angiography. Jpn J Radiol. 2011;29(8):576-82.
49. Yasunaga D, Hamon M. MDCT of interatrial septum. Diagn Interv Imaging. 2015;96(9):891-9.
50. Xiong L, Zeng Y, Gan T, Yan F, Bai J, Shi Y, et al. Assessing patent foramen ovale on coronary computed tomographic angiography: a comparison with transesophageal echocardiography. Jpn J Radiol. 2022;40(7):689-95.
51. Kiedrowicz R. Fire or ice in the treatment of atrial fibrillation? What do the results of the fire or ice trial tell us? WDR. 2016;41(4):37-40.
52. Takamiya T, Nitta J, Inaba, Sato A, Inamura Y, Kato N, et al. Cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation in hemodialysis patients. Heart Vessels. 2020;35(12): 1709-16.
53. Wang Y, Wang W, Yao J, Chen L, Yi S. Second-generation cryoballoon vs. contact-force sensing radiofrequency catheter ablation in atrial fibrillation: a meta-analysis of randomized controlled trials. J Interv Card Electrophysiol. 2021;60(1):9-19.
54. Buiatti A, von Olshausen G, Barthel P, Schneider S, Luik A, Kaess B, et al. Cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: an updated meta-analysis of randomized and observational studies. Europace. 2017;19(3):378-84.
55. Matta M, Anselmino M, Ferraris F, Scaglione M, Gaita F. Cryoballoon vs. radiofrequency contact force ablation for paroxysmal atrial fibrillation: a propensity score analysis. J Cardiovasc Med (Hagerstown). 2018;19(4):141-47.
56. Murray MI, Arnold A, Younis M, Varghese S, Zeiher AM. Cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation: a meta-analysis of randomized controlled trials. Clin Res Cardiol. 2018;107(8):658-69.
57. Inaba O, Metzner A, Rottner L, Mathew S, Lemes C, Maurer T, et al. Radiofrequency or cryoballoon ablation for index pulmonary vein isolation: What is the impact on long-term clinical outcomes after repeat ablation? J Cardiovasc Electrophysiol. 2020;31(5):1068-74.
58. Glowniak A, Tarkowski A, Fic P, Wojewoda K, Wojcik J, Wysokinski A. Second-generation cryoballoon ablation for recurrent atrial fibrillation after an index procedure with radiofrequency versus cryo: different pulmonary vein reconnection patterns but similar long-term outcome – results of a multicenter analysis. J Cardiovasc Electrophysiol. 2019;30:1005-12.
59. Ali AN, Riad O, Tawfik M, Opel A, Wong T. Newer generation cryoballoon vs. contact force-sensing radiofrequency ablation catheter in the ablation of paroxysmal atrial fibrillation. Herzschrittmacherther Elektrophysiol. 2021;32(2):236-43.
60. Wieczorek M, Sassani K, Hoeltgen R. Comparison of pulmonary vein reconnection patterns after multielectrode phased radiofrequency- and cryoballoon ablation of atrial fibrillation. BMC Cardiovasc Disord. 2020;20(1):197.
61. Gunawardene MA, Hoffmann BA, Schaeffer B, Chung DU, Moser J, Akbulak RO, et al. Influence of energy source on early atrial fibrillation recurrences: a comparison of cryoballoon vs. radiofrequency current energy ablation with the endpoint of unexcitability in pulmonary vein isolation. Europace. 2018;20(1):43-9.
62. Buist TJ, Adiyaman A, Smit JJ, Ramdat Misier AR, Elvan A. Arrhythmia-free survival and pulmonary vein reconnection patterns after second-generation cryoballoon and contact-force radiofrequency pulmonary vein isolation. Clin Res Cardiol. 2018;107(6):498-506.
63. Chen CF, Zhong YG, Jin CL, Gao XF, Liu XH, Xu YZ. Comparing between second-generation cryoballoon vs open-irrigated radiofrequency ablation in elderly patients: Acute and long-term outcomes. Clin Cardiol. 2020;43(5):500-7.
64. Mörtsell D, Arbelo E, Dagres N, Brugada J, Laroche C, Trines SA, et al. ESC-EHRA Atrial Fibrillation Ablation Long-Term Registry investigators. Cryoballoon vs. radiofrequency ablation for atrial fibrillation: a study of outcome and safety based on the ESC-EHRA atrial fibrillation ablation long-term registry and the Swedish catheter ablation registry. Europace. 2019;21(4):581-9.
65. Sørensen SK, Johannessen A, Worck R, Hansen ML, Hansen J. Radiofrequency versus cryoballoon catheter ablation for paroxysmal atrial fibrillation: durability of pulmonary vein isolation and effect on atrial fibrillation burden: The RACE-AF randomized controlled trial. Circ Arrhythm Electrophysiol. 2021;14(5):e009573.
66. Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: Implications for radiofrequency ablation. Radiology. 2004;230(3):824-9.
67. Wannasopha Y, Oilmungmool N, Euathrongchit J. Anatomical variations of pulmonary venous drainage in Thai people: multidetector CT study. Biomed Imaging Interv J. 2012;8(1):e4.
68. Mulder BA, Al-Jazairi MIH, Arends BKO, Bax N, Dijkshoorn LA, Sheikh U, et al. Pulmonary vein anatomy addressed by computed tomography and relation in paroxysmal atrial fibrillation. Clin Cardiol. 2019;42 (4):438-43.
69. Schmidt M, Dorwarth U, Straube F, Daccarett M, Rieber J, Wankerl M, et al. Cryoballoon in AF ablation: Impact of PV ovality on AF recurrence. Int J Cardiol. 2013;167(1):114-20.
70. Stachyra M, Szczasny M, Tarkowski A, Mianowana M, Wojewoda K, Wysokinska K, et al. Impact of pulmonary vein ovality index on cooling kinetics and acute success of atrial fibrillation ablation with the third-generation cryoballoon cathether. Adv Interv Cardiol. 2021;17(4):403-9.
71. Sorgente A, Chierchia GB, Asmundis C, Sarkozy A, Namdar M, Capulzini L, et al. Pulmonary vein ostium shape and orientation as possible predictors of occlusion in patients with drug-refractory paroxysmal atrial fibrillation undergoing cryoballon ablation. Europace. 2011;13:205-12.
72. Kajiyma T, Miyazaki S, Matsuda J, Watanabe T, Niida T, Takagi T, et al. Anatomic parameters predicting procedural difficulty and balloon temperature predicting successful applications in individual pulmonary veins during 28mm second-generation cryoballoon ablation. Jacc Clin Electrophysiol. 2017;3(6):580-8.
73. Boussoussou M, Szilveszter B, Vattay B, Kolossváry M, Vecsey-Nagy M, Salló Z, et. al. The effect of left atrial wall thickness and pulmonary vein sizes on the acute procedural success of atrial fibrillation ablation. Int J Cardiovasc Imaging. 2022;38:1601-11.
74. Istratoaie S, Roșu R, Cismaru G, Vesa ȘC, Puiu M, Zdrenghea D, et.al. The impact of pulmonary vein anatomy on the outcomes of catheter ablation for atrial fibrillation. Medicina (Kaunas). 2019;55(11):727.
75. Ronsoni RM, Silvestrini TL, Essebag V, Lopes RD, Lumertz Saffi MA, Luz Leiria TL. Association of the left common ostium with clinical outcome after pulmonary vein isolation in atrial fibrillation. Indian Pacing Electrophysiol J. 2021;21(2):95-100.
76. Hanaki Y, Yoshida K, Baba M, Hasebe H, Takeyasu N, Nogami A, Ieda M. Interatrial distance predicts the necessity of additional carina ablation to isolate the right-sided pulmonary veins. Heart Rhythm. 2020;1(4):259-67.
77. Baran J, Piotrowski R, Sikorska A, Kowalik I, Krynski T, Stec S, et al. Impact of pulmonary vein ostia anatomy on efficacy of cryoballoon ablation for atrial fibrillation. Heart Beat J. 2016;1:65-70.
78. Matsumoto Y, Muraoka Y, Funama Y, Mito S, Masuda T, Sato T, et al. Analysis of anatomical features of pulmonary veins on preprocedural cardiac CT images resulting in incomplete cryoballoon ablation for atrial fibrillation. J Cardiovasc Comput Tomogr. 2019;13(2):118-27.
79. Kocyigit D, Yalcin MU, Gurses KM, Selin A, Turk G, Canpolat U, et al. Pulmonary vein orientation is independently associated with outcomes following cryoballoon-based atrial fibrillation ablation. J Cardiovasc Comput Tomogr. 2018;12(4):281-5.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2022 Authors