MicroRNA expression biomarkers of chronic venous disease

Keywords

chronic venous disease
biomarker
miRNA
miRNA expression

Abstract

Chronic venous disease (CVD) is a common disease caused by hemodynamic disorders of the venous circulation in the lower extremities. The clinical image of this disease is complex and includes such signs as telangiectases, varicose veins, leg edema and skin changes, usually accompanied with ache, pain, tightness, heaviness, swelling and muscle cramps of legs. Venous ulcers develop in the advanced stages of the disease and lead to significant impairment of patient abilities and reduction of the quality of life. CVD is diagnosed based on physical and image examinations, and main treatment options include compression therapy, invasive treatments like endovenous ablation and foam sclerotherapy, as well as pharmacotherapy. Currently, there is no biochemical and molecular biomarkers utilized in diagnosis or treatment of CVD. With regard to this situation, one of the most investigated fields for identification of disease biomarkers is microRNA (miRNA). These constitute a pool of small, non-coding RNAs that play crucial roles in maintaining cellular homeostasis through posttranscriptional regulation of genes expression. Dysregulations of miRNA expression profiles have been found in patients with various diseases, and this situation provides information about potential miRNA signatures involved in pathophysiology. In this review, the studies focused on investigations of miRNA expression patterns in patients with CVD were collected. The performed literature analysis provides contemporary knowledge in the field of miRNA-dependent mechanisms involved in the etiopathogenesis of CVD and shows gaps that need to be filled in further studies.

References

1. Eberhardt RT, Raffetto JD. Chronic venous insufficiency. Circulation. 2014;130(4):333-46.

2. Bergan JJ, Schmid-Schönbein GW, Smith PD, Nicolaides AN, Boisseau MR, Eklof B. Chronic venous disease. N Engl J Med. 2006; 355(5):488-98.

3. Meissner MH, Moneta G, Burnand K, Gloviczki P, Lohr JM, Lurie F, et al. The hemodynamics and diagnosis of venous disease. J Vasc Surg. 2007;46(Suppl S):4S-24S.

4. Raffetto JD. Pathophysiology of Chronic Venous Disease and Venous Ulcers. Surg Clin North Am. 2018;98(2):337-47.

5. Rabe E, Pannier F. Clinical, aetiological, anatomical and pathological classification (CEAP): gold standard and limits. Phlebology. 2012; 27(Suppl 1):114-8.

6. Neubauer-Geryk J, Bieniaszewski L. Przewlekla choroba zylna – patofizjologia, obraz kliniczny i leczenie. Choroby Serca i Naczyn. 2009;6(3):135-41.

7. Lurie F, Passman M, Meisner M, Dalsing M, Masuda E, Welch H. The 2020 update of the CEAP classification system and reporting standards. J Vasc Surg Venous Lymphat Disord. 2020;8(3):342-52.

8. Eklof B, Perrin M, Delis KT, Rutherford RB, Gloviczki P. Updated terminology of chronic venous disorders: the VEIN-TERM transatlantic interdisciplinary consensus document. J Vasc Surg. 2009;49(2):498-501.

9. Vuylsteke ME, Colman R, Thomis S, Guillaume G, Van Quickenborne D, Staelens I. an epidemiological survey of venous disease among general practitioner attendees in different geographical regions on the globe: The final results of the Vein Consult Program. Angiology. 2018;69(9):779-85.

10. Rabe E, Guex JJ, Puskas A, Scuderi A, Fernandez Quesada F. VCP Coordinators. Epidemiology of chronic venous disorders in geographically diverse populations: results from the Vein Consult Program. Int Angiol. 2012;31(2):105-15.

11. Beebe-Dimmer JL, Pfeifer JR, Engle JS, Schottenfeld D. The epidemiology of chronic venous insufficiency and varicose veins. Ann Epidemiol. 2005;15(3):175-84.

12. Jawien A, Grzela T, Ochwat A. Prevalence of chronic venous insufficiency in men and women in Poland: Multicentre cross-sectional study in 40.095 patients. Phlebology. 2003;18:110-22.

13. Ziaja D, Sznapka M, Grzela J, Kostecki J, Biolik G, Pawlicki K, et al. Regional variations of symptoms of the chronic venous disease among primary health care patients in Poland. Acta Angiologica. 2015;21(2):31-9.

14. Vuylsteke ME, Thomis S, Guillaume G, Modliszewski ML, Weides N, Staelens I. Epidemiological study on chronic venous disease in Belgium and Luxembourg: prevalence, risk factors, and symptomatology. Eur J Vasc Endovasc Surg. 2015;49(4):432-9.

15. Curylo M, Cienkosz K, Mikos M, Czerw A. Epidemiology and diagnostics of venous disease in Poland. J Educ Health Sport. 2017; 7(9):49-57.

16. Nicolaides AN. Investigation of chronic venous insufficiency: A consensus statement (France, March 5-9, 1997). Circulation. 2000; 102(20):E126-63.

17. Gloviczki P, Comerota AJ, Dalsing MC, Eklof BG, Gillespie DL, Gloviczki ML, et al. Society for Vascular Surgery; American Venous Forum. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. J Vasc Surg. 2011;53(5 Suppl):2S-48S.

18. Youn YJ, Lee J. Chronic venous insufficiency and varicose veins of the lower extremities. Korean J Intern Med. 2019;34(2):269-83.

19. Wittens C, Davies AH, Bækgaard N, Broholm R, Cavezzi A, Chastanet S, et al. Editor's choice – management of Chronic Venous Disease: Clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2015;49(6): 678-737.

20. Smith RK, Golledge J. A systematic review of circulating markers in primary chronic venous insufficiency. Phlebology. 2014;29(9):570-9.

21. Wojciechowska A, Braniewska A, Kozar-Kaminska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017; 26(5):865-74.

22. Stepien E, Costa MC, Kurc S, Drozdz A, Cortez-Dias N, Enguita FJ. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1085-99.

23. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7): 1073-84.

24. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835-40.

25. Kim D, Sung YM, Park J, Kim S, Kim J, Park J, et al. General rules for functional microRNA targeting. Nat Genet. 2016;48:1517-26.

26. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1): 45-56.

27. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43:854-9.

28. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203-22.

29. Bogucka-Kocka A, Zalewski DP, Ruszel KP, Stepniewski A, Galkowski D, Bogucki J, et al. Dysregulation of MicroRNA regulatory network in lower extremities arterial disease. Front Genet. 2019;10:1200.

30. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39: 1073-84.

31. Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118:703-20.

32. Schulte C, Karakas M, Zeller T. MicroRNAs in cardiovascular disease – Clinical application. Clin Chem Lab Med. 2017;55:687-704.

33. Zalewski DP, Ruszel KP, Stepniewski A, Galkowski D, Bogucki J, Komsta L, et al. Dysregulation of microRNA modulatory network in abdominal aortic aneurysm. J Clin Med. 2020;9(6):1974.

34. Zhang C. MicroRNAs in vascular biology and vascular disease. J Cardiovasc Transl Res. 2010;3(3):235-40.

35. Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol. 2018;25: 227-36.

36. Qin S, Zhang C. MicroRNAs in vascular disease. J Cardiovasc Pharmacol. 2011;57:8-12.

37. Cui C, Liu G, Huang Y, Lu X, Lu M, Huang X, et al. MicroRNA profiling in great saphenous vein tissues of patients with chronic venous insufficiency. Tohoku J Exp Med. 2012;228(4):341-50.

38. Huang X, Liu Z, Shen L, Jin Y, Xu G, Zhang Z, et al. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator-activated receptor-γ coactivator-1α. J Cell Biochem. 2019;120(6):10031-42.

39. Anwar MA, Adesina-Georgiadis KN, Spagou K, Vorkas PA, Li JV, Shalhoub J, et al. A comprehensive characterisation of the metabolic profile of varicose veins; implications in elaborating plausible cellular pathways for disease pathogenesis. Sci Rep. 2017;7(1):2989.

40. Zalewski DP, Ruszel KP, Stepniewski A, Galkowski D, Bogucki J, Komsta L, et al. Dysregulations of MicroRNA and gene expression in Chronic Venous Disease. J Clin Med. 2020;9(5):1251.

41. Raffetto JD, Qiao X, Koledova VV, Khalil RA. Prolonged increases in vein wall tension increase matrix metalloproteinases and decrease constriction in rat vena cava: Potential implications in varicose veins. J Vasc Surg. 2008;48(2):447-56.

42. Biranvand AS, Khosravi M, Esfandiari G, Poursaleh A, Hosseini-Fard SR, Amirfarhangi A, et al. Associations between miR-661, miR-1202, lncRNA-HOTAIR, lncRNA-GAS5 and MMP9 in differentiated M2-macrophages of patients with varicose veins. Int Angiol. 2018;37(6):451-6.

43. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384-8.

44. Zhang W, Li L, Si Y, Shi Z, Zhu T, Zhuang S, et al. Identification of aberrant circular RNA expression and its potential clinical value in primary great saphenous vein varicosities. Biochem Biophys Res Commun. 2018;499(2):328-37.

45. Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H, et al. Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem. 2012;287(35):29324-35.

46. Wu J, Li X, Li D, Ren X, Li Y, Herter EK, et al. MicroRNA-34 family enhances wound inflammation by targeting LGR4. J Invest Dermatol. 2020;140(2):465-76.e11.

47. Jin Y, Xu G, Huang J, Zhou D, Huang X, Shen L. Analysis of the association between an insertion/deletion polymorphism within the 3' untranslated region of COL1A2 and chronic venous insufficiency. Ann Vasc Surg. 2013;27(7):959-63.

48. Sansilvestri-Morel P, Rupin A, Jaisson S, Fabiani JN, Verbeuren TJ, Vanhoutte PM. Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells. Circulation. 2002;106(4):479-83.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2022 Authors

Downloads

Download data is not yet available.