The risk of increasing tumor malignancy after PET diagnosis

Keywords

gamma radiation
tumor malignancy
positron emission tomography

Abstract

This manuscript reviews evidences underlying the estimation of risk of malignancy enhancement of advanced aggressive cancers as a result of the gamma radiation emitted by tracers used in PET diagnostics. We conclude that among many cancers, such a phenomenon likely occurs, particularly in tumor cells with an aggressive biology in the advanced stages of their development,e.g. prostate cancer, melanoma and colorectal cancer. Moreover, we surmise based on gathered evidence that fluorine -18 (18F) labeled pharmaceuticals (18F-deoxyglucose and18F-choline), commonly used in positron emission tomography (PET) can lead to malignancy enhancement of diagnosed cancer, manifesting as accelerated infiltration of the neighboring tissue, accelerated metastasis and/or radio- and chemotherapy resistance. In this review, some suggestions on future studies verifying this concept are also proposed. If our concerns are justified, it might be appropriate in the future to consider this assumption at the stage of deciding whether to undertake PET monitoring in some patients with advanced aggressive cancer.

References

1. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, et al. Mitochondrial metabolism in cancer metastasis. Visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012;11(7):1445-54.

2. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532-5.

3. Kunz M, Ibrahim SM. Molecular responses to hypoxia in tumor cells. Mol Cancer. 2003;2:23.

4. Colpaert CG, Vermeulen PB, Fox SB, Harris AL, Dirix LY, Van Marck EA. The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat. 2003;81:137-47.

5. Déry MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37:535-40.

6. Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of electrons with DNA: Radiation damage to radiosensitization. Int J Mol Sci. 2019;20(16):3998.

7. Krajewski P. Teaching material for the Faculty of Physics at the Warsaw University of Technology as part of the lecture block entitled "Fundamentals of Nuclear Safety and Radiological Protection". Warsaw; 2009. [http://www.if.pw.edu.pl/~pluta/pl/dyd/POKL33/pdf/matwykl/Biologiczne_skutki_promieniowania_jonizujacego.pdf] (accessed 23 August 2019).

8. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49: 24S-42S.

9. Sun H, Chen L, Cao S, Liang Y, Xu Y. Warburg effects in cancer and normal proliferating cells: two tales of the same name. GPB. 2020;17:273-86.

10. Miglioretti DL, Lange J, van den Broek JJ, Lee CI, van Ravesteyn NT, Ritley D, et al. Radiation-induced breast cancer incidence and mortality from digital mammography screening. A modeling study. Ann Intern Med. 2016;164:5-14.

11. Vaquero JJ, Kinahan P. Positron Emission Tomography: Current challenges and opportunities for technological advances in Clinical and Preclinical Imaging Systems. Annu Rev Biomed Eng. 2015; 17:385-414.

12. Miele E, Spinelli GP, Tomao F, Zullo A, De Marinis F, Pasciuti G, et al. Positron Emission Tomography (PET) radiotracers in oncology – utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2008;27(1):52.

13. Liberti MV, Locasale JW. The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211-8.

14. Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans. 2016;44(5):1499-505.

15. Alfarouk KO, Ibrahim ME, Gatenby RA, Brown JS. Riparian ecosystems in human cancers. Evol App. 2013;1:46-53.

16. Alfarouk KO, Muddathir AK, Shayoub ME. Tumor Acidity as Evolutionary Spite. Cancers. 2011;3:408-14.

17. Fang JS, Gillies RD, Gatenby RA. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol. 2007;18:330-7.

18. Gatenby RA, Gillies RJ. Why cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891-9.

19. Medicine & Healthcare Products Regulatory Agency. Public Assessment Report Mutual Recognition Procedure, Meta Trace FDG Solution for Injection 3000MBq/ml Fludeoxyglucose 18F. Procedure No: UK/H/2656/001/MR. UK Licence No: PL 45366/0001. Simence Healthcare Limited. [http://www.mhra.gov.uk/home/groups/par/documents/websiteresources/con2033925.pdf] (accessed 17 July 2019).

20. Vali R, Loidl W, Pirich C, Langesteger W, Beheshti M. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine. Am J Nucl Med Mol Imaging. 2015;5(2):96-108.

21. Hara T, Kosaka N, Kishi H. Development of 18F-Fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187-99.

22. Zhu A, Lee D, Shim H. Metabolic PET imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55-69.

23. Ots PS, Cardo LA, Ocana VC, Rodríguez CMA, Enríquez GLA, Paniagua CML, et al. Diagnostic performance of 18 F-choline PET-CT in prostate Cancer. Clin Traans Onkol. 2019;21(6):766-73.

24. Quinn B, Holahan B, Aime J, Humm J, St Germain J, Dauer LT. Measured dose rate constant from oncology patients administered 18F for positron emission tomography. Med Phys. 2012;39:6071-9.

25. Kohanoff J, Artacho E. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics. PLoS One. 2017;12(3):e0171820.

26. Le Caër S. Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3:235-53.

27. Maddalena F, Lettini G, Gallicchio R, Sisinni L, Simeon V, Nardelli A, et al. Evaluation of glucose uptake in normal and cancer cell lines by Positron Emission Tomography. Mol Imaging. 2015;14:490-8.

28. Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 2011;71(15):5164-74.

29. Espinoza I, Sakiyama MJ, Ma T, Fair L, Zhou X, Hassan M et al. Hypoxia on the expression of hepatoma upregulated protein in prostate cancer cells. Front Oncol. 2016;6:144.

30. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14(3):191-201.

31. Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, et al. Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis. 2008;25(4):411-25.

32. Ahmadi M, Ahmadihosseini Z, Allison SJ, Begum S, Rockley K, Sadiq M, et al. Hypoxia modulates the activity of a series of clinically approved tyrosine kinase inhibitors. Br J Pharmacol. 2013;Oct 4. doi: 10.1111/bph.12438

33. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;(7):670-5.

34. Silberstein EB. Prevalence of adverse reactions to Positron Emitting Radiopharmaceuticals in nuclear medicine. J Nucl Med. 1998;39: 2190-2.

35. Hamada N, Fujimichi Y. Classification of radiation effects for dose limitation purposes: History, current situation and future prospects. J Radiat Res. 2014;55(4):629-40.

36. Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019; 11(11):1789.

37. Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon ion therapy: A modern review of an emerging technology. Front Oncol. 2020;10:82.

38. Woloschak GE. Astro radiation and cancer biology study guide by radiation and cancer biology study guide task force. PP 140. World Cancer Research Fund International; 2012. [http://www.wcrf.org/int/cancer-facts-figures/worldwide-data] (accessed 03 November 2019).

39. Ferradini C, Jay-Gerin JP. La radiolyse de l‘eau et des solutions aqueuses: historique et actualité. Can J Chem. 1999;77:1542-75.

40. Hall EJ, Hei TK. Genomic instability and bystander effects induced by high-LET radiation. Oncogene. 2003;22:7034-42.

41. McDevitt MR, Sgouros G, Sofou S. Targeted and nontargeted α-Particle Therapies. Annu Rev Biomed Eng. 2018;20:73-93.

42. Baskar R. Emerging role of radiation induced bystander effects: Cell communicatons and carcinogenesis. Genome Integr. 2010;1:13.

43. Prise KM, O’Sullivan J.M. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9:351-60.

44. Ilnytsky Y. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue specific manner. Environ Mol Mutagen. 2009;50:105-13.

45. Travis LB, Hodgson D, Allan JM, Van Leeuwen FE. Second cancers. In: DeVita VT Jr, Lawrence TS, Rosenberg SA (eds). Cancer: Principles and practice of Oncology. 8th ed. Philadelphia: Lippincott Williams and Wilkins; 2008.

46. Haidl F, Pfister D, Semrau R, Heidenreich A. Second neoplasms after percutaneous radiotherapy. Urologe A. 2017;56(3):342-50.

47. Sountoulides P. Secondary malignancies following radiotherapy for prostate cancer. Ther Adv Urol. 2010;2(3):119-25.

48. Morton LM. Risk of treatment-related esophageal cancer among breast cancer survivors. Ann Oncol. 2012;23(12):3081-91.

49. Roychoudhuri R, Evans H, Robinson D, Moller H. Radiation-induced malignancies following radiotherapy for breast cancer. Br J Cancer. 2004;91:868-72.

50. Koukourakis MI. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. BJR. 2012;85:313-30.

51. Golfier S, Jost G, Pietsch H, Lengsfeld P, Eckardt-Schupp F, Schmid E, et al. Dicentric chromosomes and gamma-H2AX foci formation in lymphocytes of human blood samples exposed to a CT scanner: a direct comparison of dose response relationships. Radiat Prot Dosimetry. 2009;134:55-61.

52. Kempf SJ, Moertl S, Sepe S, von Toerne C, Hauck SM, Atkinson MJ et al. Low-dose ionizing radiation rapidly affects mitochondrial and synaptic signaling pathways in murine hippocampus and cortex. J Proteome Res. 2015;14(5):2055-64.

53. Welch MJ, Redvanly CS. Handbook of radiopharmaceuticals. Radiochemistry and applications: Production of radionuclides in accelerators. John Wiley & Sons Ltd.; 2003:42.

54. Taylor K, Lemon JA, Boreham DR. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice. Mutagenesis. 2014;29(4):279-87.

55. Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Watabe H, Narita Y. Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-d-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eu J Nuclear Med. 1998;25(6):565-74.

56. Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Yamadera A, Itoh M. Internal absorbed dose estimation by a TLD method for 18F-FDG and comparison with the dose estimates from whole body PET. Phys Med Biol. 1999;44:595-606.

57. Hays MT, Watson EE, Thomas SR, Stabin M. MIRD dose estimate report no. 19: radiation absorbed dose estimates from (18) F-FDG. J Nucl Med. 2002;43:210-4.

58. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46: 608-13.

59. Mejia AA, Nakamura T, Masatoshi I, Hatazawa J, Masaki M, Watanuki S. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18 fluorodeoxyglucose in PET studies. J Nucl Med. 1991;32:699-706.

60. Khan N, Islam MM, Mahmood S, Hossain GA, Chakraborty RK. 18F-fluorodeoxyglucose uptake in tumor. Mymensingh Med J. 2011; 20(2):332-42.

61. Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics. 2004;24:523-43.

62. Yu S. Review of F-FDG synthesis and quality control. Biomed Imaging Interven. 2006;2:e57-e67.

63. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254-63.

64. de Jong PA, Tiddens HA, Lequin MH, Robinson TE, Brody AS. Estimation of the radiation dose from CT in cystic fibrosis. Chest. 2008;133 (5):1289-91.

65. Brehwens K, Staaf E, Haghdoost S, González AJ, Wojcik A. Cytogenetic damage in cells exposed to ionizing radiation under conditions of a changing dose rate. Radiat Res. 2010;173:283-9.

66. Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem. 2004;279:49624-32.

67. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia. 2000;2:71-88.

68. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6:1279-87.

69. Heyes GJ, Mill AJ, Charles MW. Mammography-oncogenecity at low doses. J Radiol Prot. 2009;29(2A):A123-32.

70. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-92.

71. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nature Rev Cancer. 2008;8:967-75.

72. Vaupel P, Mayer A, Höckel M. Tumour hypoxia and malignant progression. Methods Enzymol. 2004;381:335-54.

73. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nature Rev Cancer. 2014;14:430-9.

74. Raghunand N, Mahoney BP, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol. 2003;66:1219-29.

75. Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8:2032-8.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2022 Authors

Downloads

Download data is not yet available.