Influence of chromium (III), cobalt (II) and their mixtures on cell metabolic activity
PDF

Keywords

cobalt
chromium
toxicity
interaction

Abstract

Chromium (III) and cobalt (II) are necessary elements required for the proper functioning of the organism, but their excess can cause toxic effects. They are the basic components of implants and are also commonly used in medicine as components of dietary supplements, vitamin and mineral products and energy drinks. The aim of this study was to investigate the effect of cobalt (II) and chromium (III) and their combination on BJ cells. In the study, BJ cells were exposed to CoCl2 or CrCl3 at concentrations ranging from 100 to 1400 µM, and the cytotoxicity of chromium (III) and cobalt (II) and their mixtures was assessed by MTT reduction, LDH release and NRU assays. The outcome of this work reveals the cytotoxic effects of chromium (III) and cobalt (II) and their mixtures on BJ cells. In the cytotoxicity assays, at low concentrations of CoCl2 and CrCl3, stimulation of cell proliferation was observed. In higher concentrations, the cell viability decreased for the tested line in all the assays. During the simultaneous incubation of fibroblasts with 200 µM of CrCl3 and 1000 µM of CoCl2, antagonism was observed: chromium (III) at the concentration of 200 µM induced protection from cobalt (II) toxicity; in the case of interaction of chromium chloride at 1000 µm and cobalt chloride at 200 µM, the protective effect of CrCl3 on CoCl2 was not observed. In the latter case, synergism between these elements was noted. Our work indicates that cobalt (II) and chromium (III) show cytotoxic properties. These metals have a destructive effect on the cell membrane, lysosomes and mitochondria, which leads to disorders of cell metabolism.

PDF

References

1. Leggett RW. The biokinetics of inorganic cobalt in the human body. Sci Total Environ. 2008;289:259-69.

2. Bielański A. Podstawy chemii nieorganicznej. Warszawa 2014, Wydawnictwo Naukowe PWN.

3. Finley BL, Monnot AD, Paustenbach DJ, Gaffney SH. Derivation of a chronic oral reference dose for cobalt. Regul Toxicol Pharmacol. 2012;64:491-503.

4. Ren J, Zhang X, Wang G, Liu Y, Ren Y, Zhao Y, et al. Toxicity of nickel and cobalt in Japanese flounder. Environ Pollut. 2020;263B:114516.

5. Zhao Y, Cao Ch, Liu Y, Wang J, Li S, Li L, et al. Genetic analysis of oxidative and endoplasmic reticulum stress responses induced by cobalt toxicity in budding yeast. Biochim Biophys Acta Gen Subj. 2020;1864:129516.

6. De Boeck DM, Kirsch-Volders M, Lison D. Cobalt and antimony: Genotoxicity and carcinogenicity. Science and Direct. 2003;533:135-52.

7. Kabata-Pendias A, Pendias H. Biogeochemia pierwiastków śladowych. 1993, Wydawnictwo Naukowe PWN.

8. Simonsen LO, Brown AM, Harbak H, Kristensen BI, Bennekou P. Cobalt metabolism and toxicology – A brief update. Sci Total Environ. 2012;43:210-5.

9. Bresson C, Lamouroux C, Sandre C, Tabarant M, Gault N, Poncy JL, et al. An interdisciplinary approach to investigate the impact of cobalt in a human keratinocyte cell line. Biochimie. 2008;88:1619-29.

10. Burgaz S, Demircigil GÇ, Yılmazer M, Erta N, Kemaloglu Y, Burgaz Y. Assessment of cytogenetic damage in lymphocytes and in exfoliated nasal cells of dental laboratory technicians exposed to chromium, cobalt, and nickel. Mutat Res Fund Mol Mech Mutagen. 2002;521:47-56.

11. Gault N, Sandre C, Poncy J-L, Moulin C, Lefaix J-L, Bresson C. Cobalt toxicity: chemical and radiological combined effects on HaCaT keratinocyte cell line. Toxicol Vitro. 2010;24:92-8.

12. Smith LJ, Holmes AL, Kandpal SK, Mason MD, Zheng T, Wise SP. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells. Toxicol Appl Pharmacol. 2014;278:259-65.

13. Klaunig JE, Pu ZWX, Zhou S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol. 2011;254:86-99.

14. Lyons TJ, Nersissian A, Huang H, Yeom H, Nishida CR, Graden JA, et al. The metal binding properties of the zinc site of yeast copper-zinc superoxide dismutase: implications for amyotrophic lateral sclerosis. JBIC. 2000;5:198-203.

15. Asmuss M, Mullenders LH, Eker A, Hartwig A. Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis. 2000;21(11):2097-104.

16. Méplan C, Richard MJ, Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000:19(46) 5227-36.

17. Palecek E, Brazdova M, Cernocka H, Vlk D, Brazda V, Vojtesek B. Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments. Oncogene. 1999;18(24):3617-25.

18. Barceloux DG. Chromium. Clin Toxicol. 1999;37(2):173-94.

19. Lamson DW, Plaza SM. The safety and efficacy of high-dose chromium. Alternative Med Rev. 2002;7:3.

20. Pechova A, Pavlata P. Chromium as an essential nutrient: a review. Vet Med. 2007;52(1):1-18.

21. Unice KU, Monnot AD, Gaffney SH, Tvermoes BE, Thuett KA, Paustenbach DJ, et al. Inorganic cobalt supplementation: Prediction of cobalt levels in whole blood and urine using a biokinetic model. Food Chem Toxicol. 2012;50:2456-61.

22. Rocha JFX, Aires AR, Nunes MAG, Flores EMM, Kozloski GV, Vargas AC, et al. Metabolism, Intake, and Digestibility of Lambs Supplemented with Organic Chromium. Biol Trace Elem Res. 2013;156:130-3.

23. Hamilton EM, Youngb SD, Baileyb EH, Wattsa MJ. Chromium speciation in foodstuffs: A review. Food Chem. 2018;250:105-12.

24. Galaris D, Evangelou A. 2002, The role of oxidative stress in mechanisms of metal– induced carcinogenesis. Crit.Rev.Oncol.Hematol. 142: 93-103.

25. Hepburn DDD, Vincent JB. Tissue and subcellular distribution of chromium picolinate with time after entering the bloodstream. J Inorg Biochem. 2003;94:86-93.

26. Shrivastava HY, Ravikumar T, Shanmugasundaram N, Babu M, Nair BU. Cytotoxicity studiem of chromiu (III) complexes on human dermal fibroblasts. Free Radic Biol Med. 2005;38:58-69.

27. Figgitt M, Newson N, Lesliec IJ, Fisher J, Ingham E, Case ChP. The genotoxicity of physiological concentrations of chromium (Cr (III) and Cr (VI)) and cobalt (Co (II)): An in vitro study. Mutat Res. 2010;688:53-61.

28. Persson E, Henriksson J, Tjälve H. Uptake of cobalt from the nasal mucosa into the brain via olfactory pathways in rats. Toxicol Lett. 2003;145:19-27.

29. Garcia MG, Hura M, Chen J, Bhattia M. Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature. Am J Ophthalmology Case Reports. 2020;17:100606.

30. Lin H-Y, Bumgardner JD. In vitro biocorrosion of Co–Cr–Mo implant alloy by macrophage cells. J Orthop Res. 2004;22:1231-123.

31. Lucchetti MC, Fratto G, Valeriani F, De Vittori E, Giampaoli S, Papetti P, et al. Cobalt-chromium alloys in dentistry: An evaluation of metal ion release. J Prosthet Dent. 2015;114:602-8.

32. Lutz J, Díaz C, García J.A, Blawert C, Mändal S. Corrosion behaviour of medical CoCr alloy after nitrogen plasma immersion. Surf Coating Tech. 2011;205:3043-9.

33. Mobasheria A, Proudman CH.J, Cobalt chloride doping in racehorses: Concerns over a potentially lethal practice. Vet J. 2015;205:335-8.

34. Tvermoesa BE, Finley BL, Unicec KM, Otani JM, Paustenbach DJ, Galbraith DA. Cobalt whole blood concentrations in healthy adult male volunteers following two-weeks of ingesting a cobalt supplement. Food Chem Toxicol. 2013;53:417-24

35. Fathima A, Manikandamathavan VM, Jonnalagadda RR, Nair BU. Chromium-catechin complex, synthesis and toxicity check using bacterial models. Heliyon. 2020;6(8):E04563.

36. Król E, Krejpcio Z. Chromium (III) proprionate complex supplementation improves carbohydrate metabolism in insulin-resistance rat model. Food Chem Toxicol. 2010;48:2791-6.

37. Lia P, Caoa Y, Songa G, Zhao B, Mac O, Lia Z. Anti-diabetic properties of genistein-chromium (III) complex in db/db diabetic mice and its sub-acute toxicity evaluation in normal mice. J Trace Elem Med Biol. 2020;62:126606.

38. Vincent JB. The biochemistry of chromium. J Nutr. 2000;130:715-8.

39. Ceriotti L, Pontia F, Broggi F, Kob A, Drechsler S, Thedinga E, et al. Real-time assessment of cytotoxicity by impedance measurement on a 96-well plate. Sensor Actuator B Chem. 2007;123:769-78.

40. Karovic O, Tonazzini I, Robola N, Edstrom E, Lovdahl C, Fredholm BB. Toxic effects of cobalt in primary cultures of mouse astrocytes. Similarities with hypoxia and role of HIF-1α. Biochem Pharmacol. 2007;73:694-708.

41. Christova TY, Gorneva GA, Taxirov SI, Duridanova B, Setchenska MS. Effect of cisplatin and cobalt chloride on antioxidant enzymes in the livers of Lewis lung carcinoma – Bering mice: protective role of heme oxygenase. Toxicol Lett. 2003;138:235-42.

42. Lison D. Cobalt Chapter 34. Hanbook on the Toxicology of metals. Elsevier 2015;743-763

43. Moriwaki H, Osborne MR, Phillips DH. Effects of mixing metal ions on oxidative DNA damage mediated by a Fenton-type reduction. Toxicology in Vitro. 2008;22:36-44.

44. Battaglia V, Compagnone A, Bandino A, Bragadin M, Rosii CA, Zanetti F, et al. Cobalt induces oxidative stress in isolated liver mitochondria responsible for permeability transition and intrinsic apoptosis in hepatocyte primary cultures. Int J Biochem Cell Biol. 2009;41:586-94.

45. Mou YH, Yang JY, Cui N, Wang JM, Hou Y, Song S, et al. Effects of cobalt chloride on nitric oxide and cytokines/chemokines production in microglia. Int Immunopharm. 2012;13:120-5.

46. Manygoats KR, Yazzie M, Stearns DM. Ultrastructural damage in chromium picolinate-treated cells: a TEM study. J Biol Inorg Chem. 2002;7:791-8.

47. Staniek H, Kostrzewska-Poczekaj M, Arndt M, Szyfterb K, Krejpcio Z. Genotoxicity assessment of chromium (III) propionate complex in the rat model using the comet assay. Food Chem Toxicol. 2010;48:89-92.

48. Fleury C, Petita A, Mwalea A, Antonioua J, Zukora D.J, Tabrizianb M, et al. Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: Morphology, cytotoxicity, and oxidative stress. Biomaterials. 2006;27:3351-60.

49. Chen L, Zhang J, Zhu Y, Zhang Y. Interaction of chromium (III) or chromium (VI) with catalase and its effect on the structure and function of catalase: An in vitro study. Food Chem. 2018;244:378-85.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2021 Authors

Downloads

Download data is not yet available.