Abstract
Every year, the number of cases of hypersensitivity to insect bites increases. Thus, particular attention needs to be paid to the treatment of insect allergy in children, as scratching the bites can complicate the healing process and lead to infection. Therefore, a topical issue for modern medicine and pharmacy is the development of a gel of combined anti-allergic, reparative and anti-inflammatory action for the treatment of local manifestations of allergic skin reactions. Rheological studies are one of the stages of pharmaceutical development of soft dosage forms. In this study, we perform rheological studies of hydrogels containing 0.1% dimethindene maleate and 3.0% dexpanthenol made on different carriers of dispersed structures: Carbopol™ Polymers carbomer Ultrez 10 NF, Hydroxypropyl methylcellulose (HPMC) of brand Metolose SR-90SH-100000SR, Ziboxan F200 xanthan gum. The rheological studies were undertaken using a rheometer in controlled shear rate mode CSR. Basic structural and mechanical indices of the dispersed systems were determined. These included: yield stress, structural viscosity, viscosity at infinite shear rate, the hysteresis loop area. Moreover, dynamic liquefaction coefficients have been calculated. Based on the rheological studies of hydrogels containing 0.1% dimethindene maleate and 3.0% dexpanthenol prepared with various carriers, the use of 1.8% and 2.0% HPMC hydrogels, 2.0% and 2.5% xanthan gum hydrogels, 0.5% and 0.75% carbomer gels is recommended for further biopharmaceutical studies. The application of one of these formulations as the final composition, provides adhesion and will not complicate the scaling-up of the process.References
1. Medicines. Pharmaceutical development (ICH Q8) Kyiv; 2011. ST-N MoHU 42-3.0:2011.
2. Baudonnet L, Pere D, Michaud P, Grossiord L, Rodriguez F. Effect of dispersion stirring speed on the particle size distribution and rheological properties of carbomer dispersions and gels. J Dispers Sci Technol. 2002;23(4):499-510.
3. Mazger TG. The Rheology Handbook: For users of rotational and oscillatory rheometers. 2 nd revised ed. Hannover:Vincentz Network; 2006:298.
4. Eschler D, Klein P. An evidence-based review of the efficacy of topical antihistamines in the relief of pruritus. J Drugs Dermatol. 2010;9(8):992-7.
5. Proksch E, de Bony R, Trapp S, Boudon S. Topical use of dexpanthenol: a 70th anniversary article. J Dermatol Treat. 2017;28(8):766-73.
6. Guideline “Medicines. Bioequivalence study”. State Enterprise “State Expert Center of the Ministry of Health of Ukraine”. ST-N MoHU 42-7.2:2018. [Internet]. [cited 2021 Jan 05]. Available from: https://zakon.rada.gov.ua/rada/show/v0022282-17/stru
7. Ministry of Health of Ukraine (n.d.). State Register of Medicines of Ukraine. Available from: http://www.drlz.kiev.ua [cited 2021 Jan 20].
8. Baek J, Lim J, Kang J, Shin S, Jung S, Cho C. Enhanced transdermal drug delivery of zaltoprofen using a novel formulation. Int J Pharm. 2013;453(2):358-62.
9. Hamed R, AbuRezeq A, Tarawneh O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev Ind Pharm. 2018;44(9):1488-97.
10. Carvalho F, Calixto G, Hatakeyama I, Luz GM, Gremiao M, Chorilli M.. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev Ind Pharm. 2013;39(11):1750-7.
11. Sandolo C, Coviello T, Matricardi P, Alhaique F. Characterization of polysaccharide hydrogels for modified drug delivery. Eur Bioph J Biophy. 2007;36(7):693-700.
12. Anurova MN, Bakhrushina EO, Demina NB. A review of modern gel-forming agents in technology of dosage Forms. Khimiko-farmatsevticheskii zhurnal. 2015;49(9):39-46.
13. Sosnik A, Seremeta KP. Polymeric hydrogels as technology platform for Drug Delivery Applications. Gels. 2017;3(3).
14. Stokes J, Frith W. Rheology of gelling and yielding soft matter systems. Soft Matter. 2008;4(6):1133-40.
15. Pisal P, Patil S, Pokharkar V. Rheological investigation and its correlation with permeability coefficient of drug loaded carbopol gel: influence of absorption enhancers. Drug Dev Ind Pharm. 2013;39(4):593-9.
16. Cintra G, Pinto L, Calixto G, Soares C, Von Zuben E, Scarpa M, et al. Bioadhesive surfactant systems for Methotrexate skin delivery. Molecules. 2016;21(2).
17. Sheskey PJ, Cook WG, Cable CG. Handbook of Pharmaceutical Excipients. 8th ed. London: American Pharmacists Association, Pharmaceutical Press; 2017:1216.
18. Dinkgreve M, Fazilati M, Denn M, Bonn D. Carbopol: From a simple to a thixotropic yield stress. J Rheol. 2018;62(3):773-80.
19. Kukhtenko H, Gladukh I, Kukhtenko O, Soldatov D. Influence of excipients on the structural and mechanical properties of semisolid dosage forms. AJP. 2017;11(3):575-8.
20. Lilienblum W, Bernauer U, Bodin L, Celleno L, Chaudhry Q, Coenraads P, et al. Opinion of the Scientific Committee on Consumer Safety (SCCS) – Final version of the opinion on Phenoxyethanol in cosmetic products. Regulato Toxicol Pharmacol. 2016;82:156.
21. Lyapunov AN, Bezuglaya EP, Lyapunov NA, Kirilyuk IA. Studies of carbomer gels using rotational viscometry and spin probes. Pharm Chem J. 2015;49(9):639-44.
22. Islam M, Rodriguez-Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res. 2004;21(7):1192-9.
23. Mallia V, Weiss R. Correlations between thixotropic and structural properties of molecular gels with crystalline networks. Soft Matter. 2016;12(16):3665-76.
24. Malkin AYa, Isaev AI. Rheology: concepts, methods, applications. trans. from Eng. St. Petersburg: Profession; 2007:560.
25. Ong E, O’Byrne S, Liow J. Yield stress measurement of a thixotropic colloid. Rheologica Acta. 2019;58(6-7):383-401.
26. Mendes P, Thompson R. A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheologica Acta. 2013;52(7):673-94.
27. Bautista F, de Santos J, Puig J, Manero O. Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model. J Newtonian Fluid Mech. 1999;80(2-3):93-113
28. Buitenhuis J, Ponitsch M. Negative thixotropy of polymer solutions. 1. A model explaining time-dependent viscosity. Colloid and Polymer Science. 2003;281(3):253-9.
29. Buitenhuis J, Springer J. Negative thixotropy of polymer solutions. 2. A systematic study of the time-dependent viscosity of partially hydrolyzed polyacrylamide. Colloid Polymer Sci. 2003;281(3):260-6.
30. Masalova I, Taylor M, Kharatiyan E, Malkin AY. Rheopexy in highly concentrated emulsions. J Rheol. 2005;49(4):839-49.
31. Postoy V, Kukhtenko H, Vyshnevska L, Gladukh I, Semchenko K. Study of rheological behaviour of hydroxyethyl cellulose gels in the development of the composition and technology of the medicine with anti-inflammatory activity. Pharmacia. 2019;66(4):187-92.
32. Gladukh I, Grubnik I, Kukhtenko H. Structural-mechanical studies of phytogel “Zhivitan”. JPSR. 2017;9(9):1672-76.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2021 Authors