Abstract
Scutellaria baicalensis, known also as Huang-Qin is a traditional Chinese plant used in medicine for at least 2000 years. The plant is widely distributed in Japan, Korea, Mongolia and Russia, and is listed in Chinese Pharmacopoeia, European Pharmacopoeia and British Pharmacopoeia. The interest in Huang-Qin results from various biological activities which are primarily related to secondary plants metabolites consisting of flavonoids, phenolic compounds and terpenes. It is known that the compounds are active against numerous diseases and protect the organism against harmful pathogenic agents. Particular attention is paid to baicalein, wogonin and oroxylin A – which are characteristic secondary metabolites of the plant. In this paper, we focused on phytochemical analysis and selected biological activities used in periodontal and cardiovascular problems. The presented studies confirm the ability of Huang-Qin to scavenge free radicals, moreover, that it presents anti-bacterial, anti-inflammatory and enzyme inhibitory activities.
References
1. Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part I: The basic science aspects. Angle Orthod. 2002; 72:175-9.
2. Suh MG, Choi HS, Cho K, Park SS, Kim WJ, Suh HJ, et al. Anti-inflammatory action of herbal medicine comprised of Scutellaria baicalensis and Chrysanthemum morifolium. Biosci Biotechnol Biochem. 2020;84:1799-09.
3. Xia YT, Chana GKL, Wanga HY, Donga TTX, Duan R, Hua WH, et al. The anti-bacterial effects of aerial parts of Scutellaria baicalensis: Potential application as an additive in aquaculture feedings. Aquaculture. 2020;526:735418.
4. Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol. 2018;56:465-86.
5. Gong GW, Wang HY, Kong XP, Duan R, Dong TX, Tsim WK. Flavonoids are identified from the extract of Scutellariae Radix to suppress inflammatory-induced angiogenic responses in cultured RAW 264.7 macrophages. Sci Report. 2018;8:17412.
6. Chan FL, Choi HL, Chen ZY, Chan PS, Huang Y. Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett. 2000;160:219-28.
7. Cheng F, Lu Y, Zhong X, Song W, Wang X, Sun X, Qin J, et al. Baicalin’s therapeutic time window of neuroprotection during transient focal cerebral ischemia and its antioxidative effects in vitro and in vivo. Evid Complement Alternat Med. 2013, 120261.
8. Cheng CS, Chen J, Tan HY, Wang N, Chen Z, et al. Scutellaria baicalensis and Cancer treatment: recent progress and perspectives in biomedical and clinical studies. Am J Chin Med. 2018;46:25-54.
9. Song J, Zhou YZ, Panga YY, Gao L, Du GH, Qin XM. The anti-aging effect of Scutellaria baicalensis Georgi flowers extract by regulating the glutamine-glutamate metabolic pathway in D-galactose induced aging rats. Rev Aquac. 2020;134:110843.
10. Ma JL. Study on chemical constituents from stems and leaves of Scutellaria baicalensis. Chin J Exp Trad Med Formulae. 2013;19:147-9.
11. Popova TP, Litvinenko VI, Kovalev IP. Flavones of the roots of Scutellaria baicalensis. Chem Nat Compound. 1973;9:699-702.
12. Ji S, Li ZW, Song W, Wang YR, Liang WF, Li K, et al. Bioactive constituents of Glycyrrhiza uralensis (licorice): Discovery of the effective components of a traditional herbal medicine. J Nat Product. 2016;79:281-92.
13. Tomimori T, Miyaichi Y, Imoto Y, Kizu HA, Tanabe Y. Studies on the constituents of Scutellaria species II. On the flavonoid constituents of the roots of Scutellaria baicalensis Georgi. Yakugaku Zasshi. 1983;103:607-11.
14. Wang HY. Studies on anxiolytic constituents of Scutellaria baicalensis Georgi [dissertation]. Liaoning (Shenyang): Shenyang Pharmaceutical University. 2002. Chinese.
15. Takagi S, Yamaki M, Inoue K. Studies on the water-soluble constituents of the roots of Scutellaria baicalensis Georgi (wogon). Yakugaku Zasshi. 1980;100:1220-4.
16. Tomimori T, Miyaichi Y, Imoto Y, Kizu H, Suzuki C. Studies on the constituents of Scutellaria species. IV. On the flavonoid constituents of the root of Scutellaria baicalensis Georgi. Yakugaku Zasshi. 1984;104:529-34.
17. Long HL, Xu GY, Deng AJ, Li ZH, Ma L, Lu Y, et al. Two new flavonoids from the roots of Scutellaria baicalensis. J Asian Nat Product Res. 2015;17:756-60.
18. Wang HW, Yin ZF, Li HB, Yuan XX, Yang MM, Zhao GQ. Chemical constituents from stems and leaves of Scutellaria baicalensis. Chin J Exp Trad Med Formulae. 2016;22:41-4.
19. Miyaichi Y, Tomimori T. Studies on the constituents of Scutellaria Species XVII: phenol glycosides of the root of Scutellaria baicalensis Georgi (2). J Nat Med. 1995;49:350-3.
20. Takagi S, Yamaki M, Inoue K. Flavone di-C-glycosides from Scutellaria baicalensis. Phytochemistry. 1981;20:2443-44.
21. Cha JH, Kim HW, Kim S, Jung SH, Whang WK. Antioxidant and antiallergic activity of compounds from the aerial parts of Scutellaria baicalensis Georgi. Yakhak Hoeji. 2006;50:136-43.
22. Ishimaru K, Nishikawa K, Omoto T, Asai I, Yoshihira K, Shimomura K. Two flavone 2’-glucosides from Scutellaria baicalensis. Phytochemistry. 1995;40:279-81.
23. Zhou Y, Hirotani M, Yoshikawa T, Furuya T. Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochemistry. 1997;44:83-7.
24. Miyaichi Y, Tomimori T. Studies on the constituents of Scutellaria species XVI phenol glycosides of the root of Scutellaria baicaleinsis Georgi. J Nat Med. 1994;48:215-8.
25. Ji S, Li R, Wang Q, Miao WJ, Li ZW, Si LL, Qiao X, Yu SW, Zhou DM, Ye M. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J Ethnopharmacol. 2015;176:475-84.
26. Xu DY, Chen PD, Zhang L, Cao YD, Ding AW. Study on chemical constituents of Scutellaria baicalensis. Chin J Exp Trad Med Formulae. 2011;17:78-80.
27. Xu JX, Ding LQ, Jiang MM, Qiu F. Non-flavonoid constituents from the roots of Scutellaria baicalensis Georgi. Chin J Med Chem. 2016;26:480-3.
28. Liu YX, Liu ZG, Su L, Yang RP, Hao DF, Pei YH. Chemical constituents from Scutellaria baicalensis Georgi. Chin J Med Chem. 2009;19:59-62.
29. Zhu C, Zhao Y, Wu X, Qiang C, Liu J, Shi J, Gou J, et al. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway. J Periodont Res. 2020;55:381-91.
30. Chao J, Xu M, Wang X, Guo, Z. Baicalein-p-sulfonatocalix[n]arenes inclusion complexes: characterization, antioxidant ability and stability. Polym Bull. 2019;76:989-1006.
31. Sarkar P, Nath K, Banu S. Modulatory effect of baicalein on gene expression and activity of antioxidant enzymes in streptozotocin-nicotinamide induced diabetic rats. Braz J Pharm Sci. 2019;55:e18201.
32. Tian Y, Li X, Xie H, Wang X, Xie Y, Chen C, Chen D. Protective mechanism of the antioxidant baicalein toward hydroxyl radical-treated bone marrow-derived mesenchymal stem cells. Molecules. 2018;23:223.
33. Paudel KR, Kim D.W. Microparticles-mediated vascular inflammation and its amelioration by antioxidant activity of baicalin. Antioxidants. 2020;9:890.
34. Chao J, Wang X, Xu M, Zuo Y. Characterization and enhanced antioxidant activity of the inclusion complexes of baicalin with p-sulfonatocalix[n]arenes. J Incl Phenom Macrocycl Chem. 2019;93:361-70.
35. Martínez Medina JJ, Nasob LG, Pérez AL, Rizzi A, Ferrer EG, Williams PAM. Antioxidant and anticancer effects and bioavail¬ability studies of the flavonoid baicalin and its oxidovanadium (IV) complex. J Inorg Biochem. 2017;166:150-61.
36. Liu Q, Li X, Ouyang X, Chen D. Dual effect of glucuronidation of a pyrogallol-type phytophenol antioxidant: A comparison between scutellarein and scutellarin. Molecules. 2018;23:3225.
37. Gao L, Tang H, Zeng , Tang T, Chen M, Pu P. The anti-insulin resistance effect of scutellarin may be related to antioxidant stress and AMPKα activation in diabetic mice. Obes Res Clin Pract. 2020;14:368-74.
38. Mo J,Yang R, Li F, Zhang X, He B, Zhang Y, Chen P, Shen Z. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine. 2018;42:66-74.
39. Han YK, Kim H, Shin H, Song J, Lee MK, Park B, Lee KY. Characterization of anti-inflammatory and antioxidant constituents from Scutellaria baicalensis using LC-MS coupled with a bioassay method. Molecules. 2020;25:3617.
40. Vergun O, Svydenko L, Grygorieva O, Shymanska O, Rakhmetov D, Brindza J, Ivanišová E, Antioxidant capacity of plant raw material of Scutellaria baicalensis Georgi. Potr Slovac J Food Sci. 2019;13:614-21.
41. Li K, Fan H,Yin P, Yang L, Xue Q, Li X, et al. Structure-activity relationship of eight high content flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arab J Chem. 2018;11:159-70.
42. Seo ON, Kim GS, Kim YH, Sung SP, Soo WJ, Jong JL, et al. Determination of polyphenol components of Korean Scutellaria baicalensis Georgi using liquid chromatography – tandem mass spectrometry: Contribution to overall antioxidant activity. J Funct Foods. 2013;5:1741-50.
43. Peng Y, Guo CS, Li PX, Fu ZZ, Gao LM, Di Y, et al. Immune and Anti-oxidant Functions of Ethanol Extracts of Scutellaria baicalensis Georgi in Mice Bearing U14 Cervical Cancers. Asian Pac J Cancer Prev. 2014;15:4129-33.
44. Jeong K, Shin YC, Park S, Park JS, Kim N, Um JY, et al. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice. J Biomed Sci. 2011;18:14.
45. Ming J, Zhuoneng L, Guangxun Z. Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: A literature review. Complement Ther Med. 2018;38:11-8.
46. Leung KC, Seneviratne CJ, Li X, Leung PC, Lau CBS, Wong CH, et al. Synergistic antibacterial effects of nanoparticles encapsulated with Scutellaria baicalensis and pure chlorhexidine on oral bacterial biofilms. Nanomaterials (Basel). 2016;6:61.
47. Cao Z, Li C, Zhu G. Inhibitory effects of baicalin on IL-1beta-induced MMP-1/TIMP-1 and its stimulated effect on collagen-1 production in human periodontal ligament cells. Eur J Pharmacol. 2010;641:1-6.
48. Li H, Li G, Liu X, Qiao Y, Cui J, Liu Z. The histological observation of the inhibitory effects of baicalin in lipopolysaccharide-induced periodontitis in rats. J Pract Stomatol. 2016;32:133-4.
49. Chung CP, Park JB, Bae KH. Pharmacological effects of methanolic extract from the root of scutellaria baicalensis and its flavonoids on human gingival fibroblast. Planta Med. 1995;61:150-3
50. Doyle SL, O’Neill LA. Toll-like receptors: from the discovery of NF-κB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol. 2006;72:1102-13.
51. Cai X, Li C, Du G, Cao Z. Protective effects of baicalin on ligature-induced periodontitis in rats. J Periodontal Res. 2008;43:14-21.
52. Li Q, Yu Z, Xiao D, Wang Y, Zhao L, An Y, et al. Baicalein inhibits mitochondrial apoptosis induced by oxidative stress in cardiomyocytes by stabilizing MARCH5 expression. J Cell Mol Med. 2020;24:2040-51.
53. Jian X, Liu Y, Zhao Z, Zhao L, Wang D, Liu Q. The role of traditional Chinese medicine in the treatment of atherosclerosis through the regulation of macrophage activity. Biomed Pharmacother. 2019;118:109375.
54. Kim OS, Seo CS, Kim Y, Shin HK, Ha H. Extracts of Scutellariae Radix inhibit low-density lipoprotein oxidation and the lipopolysaccharide-induced macrophage inflammatory response. Mol Med Rep. 2015;12:1335-41.
55. Wu YH, Chuang LP, Yu CL, Wang SW, Chen HY, Chang YL. Anticoagulant effect of wogonin against tissue factor expression. Eur J Pharmacol. 2019;859:172517.
56. Khan S, Kamal M. Can wogonin be used in controlling diabetic cardiomyopathy? Curr Pharm Des. 2019;25:2171-7.
57. Wang G, Liang J, Gao LR, Si ZP, Zhang XT, Liang G. et al. Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system. Cell Death Dis. 2018;9:1-17.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2021 Authors