Influence of ketotifen and conventional antiepileptic drugs on the exploratory and spontaneous locomotor activity in mice
PDF

Keywords

locomotor activity
ketotifen
antiepileptic drugs

Abstract

Drug interactions are major problems in polytherapy, especially in epilepsy, and inappropriate drug selection may result in increased frequency of seizures.
In this study, the influence of histamine type 1 (H1) receptor antagonist ketotifen and four chosen antiepileptic drugs (AEDs) on mice activity was examined. We evaluated three parameters of locomotor activity in mice: horizontal total activity with total distance and vertical activity, as well as animal spontaneous activity. Experiments were divided into two 15-minutes studies. During the first 15 minutes, we examined exploratory activity in mice; in the second period, spontaneous activity was tested. In the experiment, Ketotifen or vehicle were administered once or for 7 days daily, whereas AEDs were given only once before test performance.
Our results show that ketotifen given alone once or for 7 days significantly increased exploratory locomotor activity in mice without affecting their spontaneous activity. However, in combination with AEDs, ketotifen given once or for 7 days differently affected spontaneous and locomotor activity in mice. Our study indicates that the combination of ketotifen with AEDs needs special attention in pharmacotherapy of epilepsy.

PDF

References

1. Beghi E, Giussani G, Sander JW. The natural history and prognosis of epilepsy. Epileptic Disord. 2015;17(3):243-53.

2. Sander JW. The epidemiology of epilepsy rivisited. Curr Opin Neurol. 2008;16:165-70.

3. Berghi E. Prognosis of first seizure. In: Jallon P, Berg AT, Dulac O, Hauser WA. Prognosis of epilepsies. Montrouge: JohnLibbey; 2003:21-8.

4. Pavlova M. Sudden unexpected death in epilepsy: Assessing the risk factors. Neurology. 2020 28;94(4):e436-e438.

5. Manford M. Recent advances in epilepsy. J Neurol. 2017;264(8): 1811-24.

6. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88(3):1183-241.

7. Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther. 2017;175:116-32.

8. Schlicker E, Kathmann M. Role of the histamine H3 receptor in the central nervous system. Handb Exp Pharmacol. 2017;241:277-99.

9. Lebois EP, Jones CK, Lindsley CW. The evolution of histamine H₃ antagonists/inverse agonists. Curr Top Med Chem. 2011;11(6):648-60.

10. Sakai N, Onodera K, Maeyama K, Yanai K, Watanabe T. Effects of thioperamide, a histamine H3 receptor antagonist, on locomotor activity and brain histamine content in mast cell-deficient W/Wv mice. Life Sci. 1991;48(25):2397-404.

11. Mohsen A, Yoshikawa T, Miura Y, Nakamura T, Naganuma F, Shibuya K, et al. Mechanism of the histamine H(3) receptor-mediated increase in exploratory locomotor activity and anxiety-like behaviours in mice. Neuropharmacol. 2014;81:188-94.

12. Gerald MC, Richter NA. Studies on the effects of histaminergic agents on seizure susceptibility in mice. Psychopharmacol. 1976; 46(3):277-82.

13. Tuomisto L, Tacke U. Is histamine an anticonvulsive inhibitory transmitter? Neuropharmacol. 1986;25(8):955-8.

14. Yokoyama H, Onodera K, Maeyama K, Yanai K, Iinuma K, Tuomisto L, Watanabe T. Histamine levels and clonic convulsions of electrically-induced seizure in mice: the effects of alpha-fluoromethylhistidine and metoprine. Naunyn Schmiedebergs Arch Pharmacol. 1992;346(1):40-5.

15. Yokoyama H, Onodera K, Iinuma K, Watanabe T. Effect of thioperamide, a histamine H3 receptor antagonist, on electrically induced convulsions in mice. Eur J Pharmacol. 1993;234(1):129-33.

16. Wyngaarden JB, Seevers MH. The toxic effects of antihistaminic drugs. J Am Med Assoc. 1951;145(5):277-82.

17. Churchill JA, Gammon GD. The effect of antihistaminic drugs on convulsive seizures. J Am Med Assoc. 1949;141(1):18-21.

18. Yokoyama H, Onodera K, Iinuma K, Watanabe T. 2-Thiazolylethylamine, a selective histamine H1 agonist, decreases seizure susceptibility in mice. Pharmacol Biochem Behav. 1994;47(3):503-7.

19. Yasuhara A, Ochi A, Harada Y, Kobayashi Y. Infantile spasms associated with a histamine H1 antagonist. Neuropediatrics. 1998; 29(6):320-1.

20. Yokoyama H, Iinuma K, Yanai K, Watanabe T, Sakurai E, Onodera K. Proconvulsant effect of ketotifen, a histamine H1 antagonist, confirmed by the use of d-chlorpheniramine with monitoring electroencephalography. Methods Find Exp Clin Pharmacol. 1993; 15(3):183-8.

21. Świąder M, Wielosz M, Czuczwar SJ. Influence of antazoline and ketotifen on the anticonvulsant activity of conventional antiepileptics against maximal electroshock in mice. Eur Neuropsychopharmacol. 2004;14(4):307-18.

22. Świąder M, Wielosz M, Czuczwar SJ. Interaction of astemizole, an H1 receptor antagonist, with conventional antiepileptic drugs in mice. Pharmacol Biochem Behav. 2003;76(1):169-78.

23. Luszczki JJ, Andres MM, Swiader MJ. Effect of lamotrigine combined with felbamate on the horizontal (ambulatory) activity in mice. Ann Univ Mariae Curie Sklodowska Med. 2004;59(2):235-40.

24. Ten Eick AP, Blumer JL, Reed MD. Safety of antihistamines in children. Drug Safety. 2001;24(2):119-147.

25. Blain PG, Lane RJM. Neurological disorders. In: DM. Davies, RE. Ferner, H. De Glanville (eds). Davies’s Textbook of Adverse Drug Reactions. 5th ed. London: Chapman and Hall Medical; 1998:591-3.

26. Murphy K, Delanty N. Drug-induced seizures: general principles in assessment, management and prevention. CNS Drugs, 2000;14(2): 135-46.

27. Świąder M, Świąder K. Influence of astemizole, an H1 receptor antagonist, on the locomotors activity of carbamazepine and valproate in mice. Curr Issues Pharm Med Sci. 2012;25(2):173-5.

28. Tuomisto J, Tuomisto L. Effects of histamine and histamine antagonists on the uptake and release of catecholamines and 5-HT in brain synaptosomes. Med Biol. 1980;58(1):33-7.

29. Miyazaki S, Imaizumi M, Onodera K. Effects of thioperamide on the cholinergic system and the step-throuhg passive avoidance test in mice. Methods Find Exp Clin Pharmacol. 1995;17(10):653-8.

30. Provensi G, Costa A, Passani MB, Blandina P. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse. Neuropharmacol. 2016;109:139-47.

31. Bitner RS, Markosyan S, Nikkel AL, Brioni JD. In-vivo histamine H3 receptor antagonism activates cellular signaling suggestive of symptomatic and disease modifying efficacy in Alzheimer’s disease. Neuropharmacol. 2011;60(2-3):460-6.

32. Serafim KR, Kishi MS, Canto-de-Souza A, Mattioli R. H₁ but not H₂ histamine antagonist receptors mediate anxiety-related behaviors and emotional memory deficit in mice subjected to elevated plus-maze testing. Braz J Med Biol Res. 2013;46(5):440-6.

33. Serafim KR, Gianlorenço AC, Daher FP, Mattioli R. H1-histamine receptors in the amygdala are involved in emotional memory but do not mediate anxiety-related behaviors in mice submitted to EPM testing. Brain Res Bull. 2012;89(1-2):1-7.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2021 Authors

Downloads

Download data is not yet available.