Phytochemical and antioxidant activities of methanolic extract of <i>Lawsonia inermis</i> L. Bark

Keywords

flavonoids
polyphenols
tannins
terpenoids
antioxidant activity
Lawsonia inermis L.

Abstract

Many diseases are associated with oxidative stress are caused by free radicals. Current research has been directed towards finding naturally occurring antioxidants of plant origin. The aim of the present study was to evaluate the in vitro antioxidant activities of methanolic extract of Lawsonia inermis L. bark (MELIB). The present study was carried out for determination of qualitative, quantitative phytochemical and in vitro antioxidant activity for scavenging of free radical DPPH, superoxide radical scavenging and lipid peroxidation. The bark extract is a rich source of secondary metabolites like flavonoids at a rutin equivalent 73.43±0.26%, polyphenol at a gallic acid equivalent 84.70±0.43%, tannins at a tannic acid equivalent 88.75±0.14% and terpenoids at a linalool equivalent 68.13±0.31. MELIB showed free radicals scavenging capacity by way of the DPPH method (6.93±0.51 to 62.63±0.10% inhibition), the superoxide radical scavenging method (1.82±0.41 to 57.11±0.18% inhibition) and the ferric chloride induced lipid peroxidation method (9.87±0.33 to 80.32±0.82% inhibition). The results obtained in the present study indicate that MELIB can be a potential source of natural antioxidants due to the presence of flavonoids, polyphenols, tannins and terpenoids.

References

1. Ushimaru PI, Mariama TN, Luiz C, Di LB, Ary FJ. Antibacterial activity of medicinal plant extract. Brazilian J Micro. 2007;38:717-9.

2. Blanks T, Brown S, Cosgrave B, Woody J, Bentley V, Sullivan ON. Mind Body and Soul: The Body Shop Book of Wellbeing. Ebury Press, London; 1998:173-92.

3. Pisoschi AM, Negulescu GP. Methods for Total Antioxidant Activity Determination: A Review. Biochem Anal Biochem. 2011;1(1):1-10.

4. Litescu SC, Sandra AV, Eremia SAV, Diaconu M, Tache A. Biosensors applications on assessment of reactive oxygen species and antioxidants: Environmental Biosensors. Intechopen, Rijeka – Croati; 2011:95-114.

5. Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Tech. 2004;26:211-219.

6. Kalcher K, Svancara I, Buzuk M, Vytras K, Walcarius A. Electro-chemical sensors and biosensors based on heterogeneous carbon materials. Monatshefte für Chemie. 2009;140:861-89.

7. Mena ML, Carralero V, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM. Bioelectrochemical evaluation of the total phenols content in olive oil mill wastewaters using a tyrosinase–colloidal gold-graphite-Teflon biosensor. Inter J Env Anal Chem. 2007;87:57-65.

8. Granero AM, Fernandez H, Agostini E, Zon MA. An amperometric biosensor for trans-resveratrol determination in aqueous solutions by means of carbon paste electrodes modified with peroxidase basic isoenzymes from brassica napus. Electroanalysis. 2008;20:858-64.

9. Hurrell R. Influence of vegetable protein sources on trace element and mineral bioavailability. The J Nut. 2003;133(9):2973S-77S.

10. Selamoglu Z, Amin K, Ozgen S. Plant secondary metabolites with antioxidant properties and human, health the most recent studies in science and art. Gece Publishing, Ankara; 2018:75-80.

11. Bellakhdar J. The traditional Moroccan pharmacopoeia: Ancient Arabic medicine and popular knowledge. Ibis press, Paris; 1997.

12. Kumari P, Joshi GC, Tewari LM. Diversity and status of ethno-medicinal plants of Almora district in Uttarakhand, India. Int J Biodiver Cons. 2011;3:298-26.

13. Guha G, Rajkumar V, Ashok KR, Mathew L. Antioxidant activity of Lawsonia inermis L. extracts inhibits chromium (VI)-induced cellular and DNA toxicity. Evidence Based Comp Alter Med. 2011;1-9.

14. Sukh D. A selection of prime Ayurvedic Plant Drugs: Ancient-Modern Concordance. Anamaya Publishers, New Delhi; 2006:276-9.

15. Chopra RN, Nayer SL, Chopra IC. Glossary of Indian Medicinal Plants. CSIR Publications, New Delhi; 1956:151.

16. Sharma J, Gairola S, Gaur RD, Painuli RM. The treatment of jaundice with medicinal plants in indigenous communities of the sub-himalayan region of uttarakhand, India. J Ethnopharmacol. 2012;143:262-91.

17. Nesa L, Munira S, Mollika S, Islam MM, Choin H, Chouduri AU, Naher N. Evaluation of analgesic, anti-inflammatory and CNS depressant activities of methanolic extract of Lawsonia inermis L. barks in mice. Avicenna J Phytomed. 2014;4:287-96.

18. Golwala DK, Patel LD. Pharmacognostical studies of Bauhinia variegata L. stem. Int J Pharmaceut Res. 2012;4(3):127-30.

19. Cetkovic G, Canadanovic BJ, Djilas S, Savatovic S, Mandic A, Tumbas V. Assessment of polyphenolic content and in vitro antiradi-cal characteristics of apple pomace. Food Chem. 2008;109:340-7.

20. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555-9.

21. ISO 14502-1: 2005. Determination of substances characteristic of green and blck tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. https://www.iso.org/standard/31356.html

22. Golwala DK, Vaidya SK. Dholwani KK, Darpini SP, Satyajit S. Antioxidant and antimutagenic (anticlastogenic) activity of alcoholic extract of Bauhinia Variegata Linn root. Euro J Med Plants. 2020;31(2):32-9.

23. Sharma U, Sahu RK, Roy A, Golwala DK. In vivo antidiabetic and antioxidant potential of Stephania hernandifolia in streptozotocin induced diabetic rats. J Young Pharmacist. 2010;2(3):55-60.

24. Vaidya SK, Golwala DK, Gohil NB, Bothara SB. Antioxidant and antimutagenic potential of Ipomoea reniformis Roxb. leaf, cyclophosphamide induced bone marrow micronucleuses test in mice. Aegaeum J. 2020;8(2):262-71.

25. Palici I., Tita B, Ursica L, Tita D. Method for quantitative determination of polyphenolic compounds and tannins from vegetable products. Acta Universitatis Cibiniensis Seria F Chemia. 2005;8(2):21-32.

26. Ghorai N, Chakraborty S, Gucchait SK, Saha SK, Biswas S. Estimation of total terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Protocol Exchange. 2012;1-6. DOI: 10.1038/protex.2012.055.

27. Sanja SD, Sheth NR, Parmar G, Golwala DK. Antioxidant properties of the methanolic extract of Ipomoea reniformis. Int J Pharmacol Bio Sci. 2009;3(3):85-3.

28. Ahmad B, Khan MR, Shah NA, Khan RA. In vitro antioxidant potential of Dicliptera roxburghiana. BMC Compl Alter Med. 2013;13:140-50.

29. Viswanatha GLS, Vaidya SK, Ramesh C, Nandakumar K, Rangappa S. Antioxidant and antimutagenic activities of bark extract of Terminalia arjuna. Asian Pac J Trop Med. 2010;3(12):965-70.

30. Philip JP, Madhumitha G, Mary SA. Free radical scavenging and reducing power of Lawsonia inermis L. seeds. Asian Pac J Trop Med. 2011;4(6):457-61.

31. Kamal M, Jawaid T. 2010. Pharmacological activities of Lawsonia inermis L.: A review. Int J Biomed Res. 2010;1(2):62-8.

32. Vasu K, Goud JV, Surya A, Singara CMA. Biomolecular and phytochemical analyses of three aquatic angiosperms. Afr J Microbiol. 2009;3(8):418-21.

33. Zheng W, Wang SY. Oxygen radical absorption capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. J Agr Food Chem. 2003;51:502-9.

34. Parekh J, Chanda S. Antibacterial and phytochemical studies on twelve species of indian medicinal plants. Afr J Biomed Res. 2007;10:175-81.

35. Parekh J, Chanda S. Phytochemicals screening of some plants from western region of India. Plant Arch. 2008;8:657-62.

36. Hsu CY, Chan YP, Chang J. Antioxidant activity of extract from Polygonum cuspidatum. Biol Res. 2007;40:13-21.

37. Soni A, Sosa S. Phytochemical analysis and free radical scavenging potential of herbal and medicinal plant extracts. J Pharmacog Phytochem. 2013;2(4):22-9.

38. Fontana M, Mosca L, Rosei MA. Interaction of enkephalines with oxyradicals. Biochem Pharmacol. 2001;61:1253-7.

39. El-Gazayerly ON, Makhlouf AIA, Soelm AMA, Mohmoud MA. Antioxidant and hepatoprotective effects of silymarin phytosomes compared to milk thistle extract in CCl4 induced hepatotoxicity in rats. J Microencaps. 2014;31:23-30.

40. Aruoma OI. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Muta Res. 2003;523-524:9-20.

41. Dasgupta NDB. Antioxidant activity of Piper betle L. Leaf extract in vitro. Food Chem. 2004;88:219-24.

42. Coruh N, Celep AGS, Ozgokce F. Antioxidant properties of Prangos ferulacea (L) Lindl, Chaerophyllum macropodum Boiss and Heracleum persicum Desf. from apiaceae family used as food in eastern anatolia and their inhibitory effects on glutathione-S-transferase. Food Chem. 2007;100:1237-42.

43. Bahar E, Ara J, Alam M, Nath B, Bhowmik U, Runi N. In vitro antioxidant and thrombolytic activity of methanol extract of Sida acuta. J Pharmacog Phytochem. 2013;2(2):125-33.

44. Yazdanparast R, Ardestani A. In vitro antioxidant and free radical scavenging activity of Cyperus rotundus. J Med Food. 2007;10:667-74.

45. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford University Press, Oxford; 1998:30-55.

46. Yazdanparast R, Bahramikias S, Ardestani A. Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chemico Biol Inter. 2008;172:176-84.

47. Derese S, Guantai EM, Souaibou Y, Kuete V. Therapeutic potential against metabolic, inflammatory, infectious and systemic diseases. Medicinal spices and vegetables from Africa. University of Dschang, Dschang, Academic Press, Cameroon; 2017:451-83

48. Packer L, Ong ASH. Biological oxidants and antioxidants: Molecular mechanisms and health effects. AOCS Press, Champaign, IL; 1997.

49. Jovanovic SV, Simic MG. Antioxidants in nutrition. Annals New York Acad Sci. 2000;899:326-34.

50. Wojdyło A, Oszmiański J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007; 105(3):940-9.

51. Escarpa A, González MC. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal Chimica Acta. 2001;427:119-27.

52. Vaidya SK, Golwala DK, Shrimanker MV, Darpini SP, Satyajit S. Antioxidant and anti-arthritic potential of Casuarina equisetifolia fruit methanolic extract. Eur J Med Plants. 2020;31(1):42-53.

53. Qianqian H, Xiuli L, Guoqi Z, Tianming H, Yuxi W. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production Anim Nutr. 2018;4(2):137-50.

54. Rufino AT., Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, Mendes AF. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J Nat Prod. 2014;77:264-9.

55. Ma J, Xu H, Wu J, Qu C, Sun F, Xu S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Inter Immunopharmacol. 2015;29:708-13.

56. Rodrigues KA, Amorim LV, Dias CN, Moraes DFC, Carneiro SM, Carvalho FA. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J Ethnopharmacol. 2015;160:32-40.

57. Li XJ, Yang YJ, Li YS, Zhang WK, Tang HB. α-Pinene, linalool and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol. 2016;179:22-6.

58. Yu PJ, Wan LM, Wan SH, Chen WY, Xie H, Meng DM, Zhang JJ, Xiao XL. Standardized myrtol attenuates lipopolysaccharide induced acute lung injury in mice. Pharmaceut Biol. 2016;54:3211-6.

59. Zulak KG, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integ Plant Biol. 2010;52:86-97.

60. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200.

61. Ramchoun M, Sellam K, Harnafi H, Alem C, Benlyas M, Khallouki F, Amrani S. Investigation of antioxidant and antihemolytic properties of Thymus satureioides collected from tafilalet region, southeast of morocco. Asian Pac J Trop Biomed. 2015;5(2):93-100.

62. Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276-7.

63. Zago MP, Verstraeten SV, Oteiza PI. Zinc in the prevention of Fe2+-initiated lipid and protein oxidation. Biol Res. 2000;33:143-50.

64. Oboh G, Akinyemi AJ, Ademiluyi AO. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro. Exp Toxicol Path. 2012;64:31-6.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2020 Authors

Downloads

Download data is not yet available.