Role of stable hydrogen isotope variations in water for drug dissolution managing
PDF

Keywords

kinetics dissolving
laser diffraction spectroscopy
deuterium depleted water (ddw)
water clusters
antibacterial
neuroprotective drugs
kinetic isotope effect (KIEs)

Abstract

In the present work, we provide the results of defining by utilizing Laser diffraction spectroscopy, the kinetic isotopic effect of solvent and constant of dissolution rate κ, s-1 of аn active pharmaceutical ingredient (API) in water with a different content of a stable 12H isotope on the basis of the laws of first-order kinetics. This approach is based on the analysis of the light scattering profile that occurs when the particles of the dispersion phase in the aquatic environment are covered with a collimated laser beam. For the first time, the dependence of the rate of dissolution is demonstrated not only on the properties of the pharmaceutical substance itself (water solubility mg/ml, octanol–water partition coefficient log P oct/water, topological polar surface area, Abraham solvation parameters, the lattice type), but also on the properties of the solvent, depending on the content of stable hydrogen isotope. We show that the rate constant of dissolution of a sparingly hydrophobic substance moxifloxacin hydrochloride (MF · HCl) in the Mili-Q water is: k=1.20±0.14∙10-2 s-1 at 293.15 K, while in deuterium depleted water, it is k=4.24±0.4∙10-2 s-1. Consequently, we have established the development of the normal kinetic isotopic effect (kH/kD >1) of the solvent. This effect can be explained both by the positions of the difference in the vibrational energy of zero levels in the initial and transition states, and from the position of water clusters giving volumetric effects of salvation, depending on the ratio D/H. The study of kinetic isotopic effects is a method that gives an indication of the mechanism of reactions and the nature of the transition state. The effect of increasing the dissolution of the API, as a function of the D/H ratio, we have discovered, can be used in the chemical and pharmaceutical industries in the study of API properties and in the drug production through improvement in soluble and pharmacokinetic characteristics.

PDF

References

1. Urey HC, Brickwedde FG, Murphy GM. A hydrogen isotope of mass 2 and its concentration. Phys Rev. 1931;40(1):1-15.

2. Brand WA, Coplen TB. Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health S. 2012;48(3):393-409.

3. Mark H. Thiemens introduction to chemistry and applications in nature of mass independent isotope effects special feature. Proc Natl Acad Sci USA. 2013;110(44):17631-7.

4. Newell RR. What’s new in isotopes. Calif Med. 1950;73(1):115.

5. Jiping L, Xiaobo L. Deuteride. Deuteride materials. Amazon Digital Services LLC; 2019.

6. Sukhninder K, Monika G. Deuteration as a tool for optimization of metabolic stability and toxicity of drugs. Glob J Pharmaceu Sci. 2017;1(14):001-0011.

7. Ding Z, Hou Y, Wang S., Sun T, Ma M, Guan H, Li W. Synthesis of deuterium-enriched and fluorine-substituted plinabulin derivatives and evaluation of their antitumor activities. Mol Divers. 2017;21(3):577-83.

8. Ricardo P, Grossberg G. AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Investig Drugs. 2017; 26(1):121-32.

9. Merbel V, Bronsema KJ, Gorman SH, BakhtiaR. Monitoring of the deuterated and nondeuterated forms of levodopa and five metabolites in plasma and urine by LC-MS/MS. Bioanal. 2019;11(4):279-93.

10. Russak EM, Bednarczyk EM. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-6.

11. Dean L. Deutetrabenazine Therapy and CYP2D6 Genotype. Med Genet Summ. 2012;9(1):155-65.

12. Limandri BJ. Tardive dyskinesia: New treatments available. J Psychosoc Nurs Ment Health Serv. 2019;57(5):11-4.

13. Timmins GS. Deuterated drugs; updates and obviousness analysis. Expert Opin Ther Pat. 2017;27(12):1353-61.

14. Kusinski M, Nagesh J, Gladkikh M, Izmaylov A, Jockusch RA. Deuterium isotope effect in fluorescence of gaseous oxazine dyes. Phys Chem Chem Phys. 2019;21(10):5759-70.

15. Butler D. The scattering of slow neutrons by heavy water: I. Intramolecular scattering. Proc Phys Soc. 2002;81(2):276-93.

16. Atchison F, Brandt B, Bryś T, Daum M, Fierlinger P, Hautle P, et al. Measured total cross sections of slow neutrons scattered by gaseous and liquid 2H(2). Phys Rev Lett. 2005;94(21):212-502.

17. Kuz’mina NE, Moiseev SV, Krylov VI, Deryabin AS, Yashkir VA, Merkulov VA. Validation of an NMR-spectroscopic method for authenticity confirmation of buserelin acetate pharmaceutical substance. Pharm Chem J. 2018;52:159-65.

18. Koszinowski K, Stephenson DS. Large solvent isotope effect associated with the hydrolysis of allylindium iodide. J Org Chem. 2018;83(23):14314-22.

19. Muccitelli W-Y. Wen Solubilities of hydrogen and deuterium gases in water and their isotope fractionation factor. J Sol Chem. 1978;7:257-67.

20. Shuangxi F, Qiding Z, Hongbo G, Daobing W, Guohui L, Zhanbin H. Elemental profile and oxygen isotope ratio (δ18O) for verifying the geographical origin of Chinese wines. JFDA. 2018;26(3):1033-44.

21. Xiao W, Wen X, Wang W, Xiao Q, Xu J, Cao C, et al. Spatial distribution and temporal variability of stable water isotopes in a large and shallow lake. Isot Environ Health S. 2016;52(4-5):443-54.

22. Gabriel JB, James, RE, Lesley AC, Erik TE. Stable isotope ratios of tap water in the contiguous United States. Water Resour Res. 2007;43(3):45-65.

23. Schoenemann SW, Schauer AJ, Steig EJ. Measurement of SLAP and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17O(excess). Rapid Commun Mass Spectrom. 2013;27(5):582-90.

24. Xie X, Zubarev RA. On the effect of planetary stable isotope compositions on growth and survival of terrestrial organisms. PLoS One. 2017;12(1):1-9.

25. Shahram E, Abolghasem J, Hadi V, Ali S. Are crystallinity parameters critical for drug solubility prediction? J Sol Chem. 2015; 44(12):2297-315.

26. Eleftheriadis GK. Mantelou P, Karavasili C, Chatzopoulou P, Katsantonis DM, Irakli M, et al. Development and characterization of a self-nanoemulsifying drug delivery system comprised of rice bran oil for poorly soluble drugs. AAPS Pharm Sci Tech. 2019; 20(2):78-89.

27. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharmaceutics. 2012;20(12):177-95.

28. Wang J, Liao Y, Xia J, Wang Z, Mo X, Feng J, et al. Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Res Ther. 2019;10(1):2-10.

29. Syroeshkin AV, Uspenskaya EV, Pleteneva TV, Morozova MA, Maksimova TV, Koldina AM, et al. Mechanochemical activation of pharmaceutical substances as a factor for modification of their physical, chemical and biological properties. Int J App Pharm. 2019; 11(3):118-23.

30. Timur SS, Yöyen-Ermiş D, Esendağlı G, Yonat S, Horzum U, Esendağlı G, Gürsoy RN. Efficacy of a novel LyP-1-containing self-microemulsifying drug delivery system (SMEDDS) for active targeting to breast cancer. Eur J Pharm Biopharm. 2019; 136(1):138-46.

31. Livingstone G. Franks F, Aspinal LJ. The mutarotation rates of glucose. J Solution Chem. 1977;6(1):203-10.

32. Ulyantsev AS, Uspenskaya EV, Pleteneva TV, Popov PI, Samsoni-Todorov O, Goncharuk VV, Syroeshkin AV. Rapid determination of the identity of aqueous drug solutions. Pharmaceut Chem J. 2009; 43(12):687-91.

33. Goncharuk VV, Pleteneva TV, Grebennikova TV. Syroeshkin AV, Uspenskaya EV, Antipova NV, et al. Determination of Biological Activity of Water Having a Different Isotope Ratio of Protium and Deuterium. J Water Chem Tech. 2018;40(1):27-34.

34. Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Levitskaya OV, Tribot-Laspiere MA, Zlatsky IA, et al. Polarimetric research of pharmaceutical substances in aqueous solutions with different water isotopologues ratio. I J App Pharm. 2018;10(5):243-8.

35. The United States Pharmacopeia and National Formulary USP 35–NF 31. Rockville: The United States Pharmacopeial Convention, Inc;2013.

36. Anfimova EV, Uspenskaya EV, Pleteneva TV, Syroeshkin AV. Solubility kinetics of drugs studied by lalls method in water solutions with various hydrogen isotope content. Drug development & registration. 2017;1(1):150-5.

37. Henry NС. Diffraction before destruction. B Biol Sci. 2014;17:1-13.

38. ISO 13320:2009 Particle Size Analysis – Laser Diffraction Methods. Part 1. General Principles; 2009.

39. Yacyshyn MB. Deuterium isotope effects for inorganic oxyacids at elevated temperatures using raman spectroscopy. Guelph, Ontario, Canada; 2013.

40. Arnett EM, Mckelvey DR. Solute-solvent interactions. Marcel Dekker, New York; 1969.

41. Goncharuk VV, Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Levitskaya OV, Tverdislov VA. On the possibility of chiral structure-density submillimeter inhomogeneities existing in water. J Water Chem Tech. 2017;39(1):319-24.

42. Bacsik Z, Canongiam JN, Lopes MF, Costa G, Jancsó G, Mink J, Pádua AA. Solubility isotope effects in aqueous solutions of methane. J Chem Phys. 2002;116(24):816-10824.

43. Michael R, Duff Jr, Elizabeth E. Thermodynamics and solvent linkage of macromolecule-ligand interactions. Methods. 2015;76(1):51-60.

44. Prince V, Bowling K.C. Topiramate in the treatment of cocaine use disorder. Am J Health Syst Pharm. 2018;75(1):13-22.

45. Bruno E, Nicoletti A, Quattrocchi G, Allegra R, Filippini G, Colosimo C, Zappia M. Topiramate for essential tremor. Cochrane Database Syst Rev. 2017;4(1):87-90.

46. McGee EU, Samuel E, Boronea B, Dillard N, Milby MN, Lewis SJ. Quinolone Allergy. Pharmacy. 2019;7(3):97-109.

47. Muhlenweg Н, Hirleman ED. Laser diffraction spectroscopy: Influence of particle shapeand a shape adaptation technique. Par Pa. Sys Charact. 1998;15(4):163-9.

48. Shaikh HK, Kshirsagar RV, Patil SG. Mathematical models for drug release characterization: A review. World J Phar Sci. 2015;4:324-38.

49. Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol. 2008;31(4):466-75.

50. Piskulich ZA, Mesele OO, Thompson WH. Activation energies and beyond. J Phys Chem. 2019;123(33):7185-94.

51. Carvalho-Silva VH, Coutinho ND, Aquilant, V. Temperature dependence of rate processes beyond Arrhenius and Eyring activation and transitivity. Front Chem. 2019;7(1):1-11.

52. Gu H. Advances in kinetic isotope effect measurement techniques for enzyme mechanism study. Molecules. 2013;18(8):9278-92.

53. Francis K. On the use of nancompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Metods Enzymol. 2019; 620(1):115-43.

54. Uspenskaya EV, Anfimova EV, Syroeshkin AV, Pleteneva TV. Kinetics of pharmaceutical substance solubility in water with different hydrogen isotopes content. Indian J Pharm Sci. 2018;80(2):318-24.

55. Kenneth BW. The Deuterium isotope effect. Chem Rev. 1955; 55(4):713-43.

56. Saunders WH. Kinetic Isotope effects. Survey of Progress in Chemistry. 1966;3(1):109-46.

57. Hama T, Hirokazu U, Kouchi A, Watanabe N. Quantum tunneling observed without its characteristic large kinetic isotope effects. Proc Natl Acad Sci USA. 2015;112(24):7438-43.

58. Arnett EM, McKelvey DR. A large solvation enthalpy effect in highly aqueous t-butyl alcohol solutionsJ. Am Chem Soc. 1965;87(6):1393-4.

59. Némethy G, Scheraga HA. Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide. J Chem Phys. 1964;41:680-96.

60. Mysels KJ. Light scattering and the structure of pure water. JACS. 1964;86(17):3503-5.

61. Kresge AJ, Powell MF. The kinetics of isotope exchange reactions: Use of initial rates to measure isotope effects on carbon acid ionization. Int Jf Chem Kinet. 1982;14(1):19-34.

62. Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Zlatskiy IA, Antipova NA, Grebennikova TV, Levitskaya OV. D/H control of chemical kinetics in water solutions under low deuterium concentrations. Chem Engin J. 2018;377:1-2.

63. Louis L, Wong H. Predicting oral drug absorption: Mini review on physiologically based pharmacokinetic models. Pharmaceutics. 2017; 9(4):41-55.

64. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, et al. DrugBank 5.0: a major update to the Drug Bank database for 2018. Nucleic Acids Res. 2017;46(D1):D1074-D1082.

65. National Center for Biotechnology Information. Pub Chem Database. Verapamil, CID=2520, https://pubchem.ncbi.nlm.nih.gov/compound/Verapamil (accessed on Dec. 13, 2019)

66. Ahmad I, Bano R, Musharraf SG, Ahmed S, Qamar A, Bhatti MS, Shad Z. Photodegradation of moxifloxacin in aqueous and organic solvents: A kinetic study. AAPS Pharm Sci Tech. 2014;15(1):1588-97.

67. Matsuura K, Suto C, Akura J, Inoue Y. Comparison between intracameral moxifloxacin administration methods by assessing intraocular concentrations and drug kinetics. Graefe’s Arch Clin Expl Ophthal. 2013;251(1):1955-9.

68. Avcıbaşı U, Demiroğlu H, Sakarya S. Ünak P, Tekin V, Ateş B. The effect of radiolabeled antibiotics on biofilm and microorganism. J Radioanal Nucl Chem. 2018;316(1):275-87.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2020 Authors

Downloads

Download data is not yet available.