An overview of techniques for multifold enhancement in solubility of poorly soluble drugs
PDF

Keywords

poorly soluble drugs
solubility
dissolution
bioavailability
salt formation
solid dispersion
complexation
co-crystallization

Abstract

Poor water solubility of newly discovered compounds has become the most common challenge in the drug development process. Indeed, poor solubility is considered as the root cause of failure of drug during drug development phases. Moreover, it has also been reported to be the main reason for bioavailability issues such as poor, inconsistent, incomplete and highly variable bioavailability of the marketed products. As per an estimate, approximately 90% of drug molecules suffer with poor water solubility at early stage and approximately 40% of the marketed drugs have bioavailability problems mainly due to poor water solubility. Solubility enhancement of the newly discovered compounds is primary research area for the pharmaceutical industries and research institutions. The conventional techniques to improve aqueous solubility of drugs employ salt formation, prodrug formation, co-crystallization, complexation, amorphous solid dispersion and use of co-solvent, surfactants or hydrotropic agents. Current advancement in the science and technology has enabled the use of relatively new techniques under the umbrella of nanotechnology. These include the development of nanocrystals, nanosuspensions, nanoemulsions, microemulsions, liposomes and nanoparticles to enhance the solubility. This review focuses on the conventional and current approaches of multifold enhancement in the solubility of poorly soluble marketed drugs, including newly discovered compounds.

PDF

References

1. Liu R, Li X, Lam KS. Combinatorial chemistry in drug discovery. Curr Opin Chem Biol. 2017;38:117-26.

2. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188-95.

3. Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today. 2012;17(19-20):1088-102.

4. Gardner CR, Walsh CT, Almarsson Ö. Drugs as materials: valuing physical form in drug discovery. Nat. Rev. Drug Discov. 2004;3(11): 926-34.

5. Huang LF, Tong WQ. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev. 2004;56(3): 321-34.

6. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1): 235-49.

7. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sinica B. 2015; 5(5):442-53.

8. Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Del Rev. 2007;59(7):603-16.

9. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Del Rev. 2007;59(7):677-94.

10. Seedher N, Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm Dev Tech. 2009;14(2):185-92.

11. Rangel-Yagui CO, Pessoa Jr A, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci. 2005;8(2):147-63.

12. Sintra TE, Shimizu K, Ventura SP, Shimizu S, Lopes JC, Coutinho JA. Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes. Phy Chem Chem Phy. 2018;20(3):2094-103.

13. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017-25.

14. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101-25.

15. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47-60.

16. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1-2):129-39.

17. Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. Int J Pharm. 1998;160(2):229-37.

18. Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Del. 2012;9(5):585-98.

19. He CX, He ZG, Gao JQ. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Del. 2010;7(4):445-60.

20. Hu J, Johnston KP, Williams III RO. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm. 2004;30(3):233-45.

21. Miyazaki S, Nakano M, Arita T. A comparison of solubility characteristics of free bases and hydrochloride salts of tetracycline antibiotics in hydrochloric acid solutions. Chem Pharm Bull (Tokyo). 1975;23(6):1197-204.

22. Agharkar S, Lindenbaum S, Higuchi T. Enhancement of solubility of drug salts by hydrophilic counterions: properties of organic salts of an antimalarial drug. J Pharm Sci. 1976;65(5):747-9.

23. Groo AC, De Pascale M, Voisin-Chiret AS, Corvaisier S, Since M, Malzert-Fréon A. Comparison of 2 strategies to enhance pyridoclax solubility: Nanoemulsion delivery system versus salt synthesis. Eur J Pharm Sci. 2016;97:218-226.

24. Sanphui P, Tothadi S, Ganguly S, Desiraju GR. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt. Mol Pharm. 2013;10(12):4687-97.

25. Nielsen LH, Gordon S, Holm R, Selen A, Rades T, Müllertz A. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats. Eur J Pharm Biopharm. 2013;85(3 Pt B):942-51.

26. Chiang PC, Wong H. Incorporation of physiologically based pharma-cokinetic modeling in the evaluation of solubility requirements for the salt selection process: a case study using phenytoin. AAPS J. 2013;15(4):1109-18.

27. Nielsen AB, Frydenvang K, Liljefors T, Buur A, Larsen C. Assessment of the combined approach of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines using bupivacaine as a model drug. Eur J Pharm Sci. 2005;24(1):85-93.

28. ElShaer A, Khan S, Perumal D, Hanson P, Mohammed AR. Use of amino acids as counterions improves the solubility of the BCS II model drug, indomethacin. Curr Drug Deliv. 2011;8(4):363-72.

29. Jornada DH, dos Santos Fernandes GF, Chiba DE, De Melo TR, Dos Santos JL, Chung MC. The prodrug approach: a successful tool for improving drug solubility. Molecules. 2015;21(1):42.

30. Nielsen AB, Buur A, Larsen C. Bioreversible quaternary N-acyloxymethyl derivatives of the tertiary amines bupivacaine and lidocaine--synthesis, aqueous solubility and stability in buffer, human plasma and simulated intestinal fluid. Eur J Pharm Sci. 2005;24(5):433-40.

31. Sanphui P, Tothadi S, Ganguly S, Desiraju GR. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt. Mol Pharm. 2013;10(12):4687-97.

32. Niethammer A, Gaedicke G, Lode HN, Wrasidlo W. Synthesis and preclinical characterization of a paclitaxel prodrug with improved antitumor activity and water solubility. Bioconjug Chem. 2001;12(3):414-20.

33. Siddiqui A, McGuigan C, Ballatore C, Srinivasan S, De Clercq E, Balzarini J. Enhancing the aqueous solubility of d4T-based phosphoramidate prodrugs. Bioorg Med Chem Lett. 2000;10(4): 381-4.

34. Nielsen LS, Bundgaard H, Falch E. Prodrugs of thiabendazole with increased water-solubility. Acta Pharm Nord. 1992;4(1):43-9.

35. Gualdesi MS, Ravetti S, Raviolo MA, Briñón MC. Preformulation studies of novel 5’-O-carbonates of lamivudine with biological activity: solubility and stability assays. Drug Dev Ind Pharm. 2014; 40(9):1246-52.

36. Hasabelnaby S, Goudah A, Agarwal HK, abd Alla MS, Tjarks W. Synthesis,chemical and enzymatic hydrolysis, and aqueous solubility of amino acid ester prodrugs of 3-carboranyl thymidine analogs for boron neutron capture therapy of brain tumors. Eur J Med Chem. 2012;55:325-34.

37. Mahfouz NM, Hassan MA. Synthesis, chemical and enzymatic hydrolysis, and bioavailability evaluation in rabbits of metronidazole amino acid ester prodrugs with enhanced water solubility. J Pharm Pharmacol. 2001;53(6):841-8.

38. Jouyban, A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci. 2008;11(1):32-58.

39. Kovacs K, Ancha M, Jane M, Lee S, Angalakurthi S, Negrito M, Rasheed S, Nwaneri A, Petrikovics I. Identification, solubility enhancement and in vivo testing of a cyanide antidote candidate. Eur J Pharm Sci. 2013;49(3):352-8.

40. Nicoli S, Bilzi S, Santi P, Caira MR, Li J, Bettini R. Ethyl-paraben and nicotinamide mixtures: apparent solubility, thermal behavior and X-ray structure of the 1:1 co-crystal. J Pharm Sci. 2008;97(11):4830-9.

41. Takeichi Y, Kimura T. Improvement of aqueous solubility and rectal absorption of 6-mercaptopurine by addition of sodium benzoate. Biol Pharm Bull. 1994;17(10):1391-4.

42. Siddiqui A, McGuigan C, Ballatore C, Srinivasan S, De Clercq E, Balzarini J. Enhancing the aqueous solubility of d4T-based phosphoramidate prodrugs. Bioorg Med Chem Lett. 2000;10(4):381-4.

43. Seedher N, Agarwal P. Various solvent systems for solubility enhancement of enrofloxacin. Indian J Pharm Sci. 2009;71(1):82-7.

44. Haq N, Siddiqui NA, Shakeel F. Solubility and molecular interactions of ferulic acid in various (isopropanol + water) mixtures. J Pharm Pharmacol. 2017;69(11):1485-94.

45. Rangel-Yagui CO, Pessoa Jr A, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci. 2005;8(2):147-63.

46. Zhang Z, Cui C, Wei F, Lv H. Improved solubility and oral bioavailability of apigenin via Soluplus/Pluronic F127 binary mixed micelles system. Drug Dev Ind Pharm. 2017;43(8):1276-82.

47. Dugar RP, Gajera BY, Dave RH. Fusion method for solubility and dissolution rate enhancement of ibuprofen using block copolymer poloxamer 407. AAPS PharmSciTech. 2016;17(6):1428-40.

48. Granero GE, Ramachandran C, Amidon GL. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions. Drug Dev Ind Pharm. 2005;31(9):917-22.

49. Varshosaz J, Ziaei V, Minaiyan M, Jahanian-Najafabadi A, Sayed-Tabatabaei L. Enhanced solubility, oral bioavailability and anti-osteoporotic effects of raloxifene HCl in ovariectomized rats by Igepal CO-890 nanomicelles. Pharm Dev Technol. 2018,30:1-12.

50. Mennini N, Furlanetto S, Bragagni M, Ghelardini C, Di Cesare Mannelli L, Mura P. Development of a chitosan-derivative micellar formulation to improve celecoxib solubility and bioavailability. Drug Dev Ind Pharm. 2014;40(11):1494-502.

51. Kim MS, Kim JS, Cho WK, Hwang SJ. Enhanced solubility and oral absorption of sirolimus using D-α-tocopheryl polyethylene glycol succinate micelles. Artif Cells Nanomed Biotechnol. 2013;41(2):85-91.

52. Lapenna S, Bilia AR, Morris GA, Nilsson M. Novel artemisinin and curcumin micellar formulations: drug solubility studies by NMR spectroscopy. J Pharm Sci. 2009;98(10):3666-75.

53. Balakrishnan A, Rege BD, Amidon GL, Polli JE. Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity. J Pharm Sci. 2004;93(8):2064-75.

54. Tsuji A, Miyamoto E, Matsuda M, Nishimura K, Yamana T. Effects of surfactants on the aqueous stability and solubility of beta-lactam antibiotics. J Pharm Sci. 1982;71(12):1313-8.

55. Balasubramanian D, Srinivas V, Gaikar VG, Sharma MM. Aggregation behavior of hydrotropic compounds in aqueous solution. J Phy Chem. 1989;93(9):3865-70.

56. Madan JR, Kamate VJ, Dua K, Awasthi R. Improving the solubility of nevirapine using A hydrotropy and mixed hydrotropy based solid dispersion approach. Polim Med. 2017;47(2):83-90.

57. Beig A, Lindley D, Miller JM, Agbaria R, Dahan A. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility-Permeability Interplay. Front Pharmacol. 2016;7(379):1-8.

58. Madan JR, Pawar KT, Dua K. Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy. Int J Pharm Investig. 2015;5(2):114-20.

59. Maheshwari RK, Jagwani Y. Mixed hydrotropy: novel science of solubility enhancement. Indian J Pharm Sci. 2011;73(2):179-83.

60. Coffman RE, Kildsig DO. Effect of nicotinamide and urea on the solubility of riboflavin in various solvents. J Pharm Sci. 1996;85(9):951-4.

61. Frank SG, Cho MJ. Phase solubility analysis and PMR study of complexing behavior of dinoprostone with beta-cyclodextrin in water. J Pharm Sci. 1978;67(12):1665-8.

62. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1-11.

63. Budhwar V. Cyclodextrin Complexes: An approach to improve the physicochemical properties of drugs and applications of cyclodextrin complexes. Asian J Pharm. 2018;12(02).

64. Azzi J, Danjou PE, Landy D, Ruellan S, Auezova L, Greige-Gerges H, et al. The effect of cyclodextrin complexation on the solubility and photostability of nerolidol as pure compound and as main constituent of cabreuva essential oil. Beilstein J Org Chem. 2017; 13:835-44.

65. Chi L, Liu R, Guo T, Wang M, Liao Z, Wu L, et al. Dramatic improvement of the solubility of pseudolaric acid B by cyclodextrin complexation: preparation, characterization and validation. Int J Pharm. 2015;479(2):349-56.

66. Vangara KK, Ali HI, Lu D, Liu JL, Kolluru S, Palakurthi S. SN-38-cyclodextrin complexation and its influence on the solubility, stability, and in vitro anticancer activity against ovarian cancer. AAPS PharmSciTech. 2014;15(2):472-82.

67. Zhang QF, Nie HC, Shangguang XC, Yin ZP, Zheng GD, Chen JG. Aqueous solubility and stability enhancement of astilbin through complexation with cyclodextrins. J Agric Food Chem. 2013; 61(1):151-6.

68. Ansari MT, Iqbal I, Sunderland VB. Dihydroartemisinin-cyclodextrin complexation: solubility and stability. Arch Pharm Res. 2009;32(1):155-65.

69. Klein S, Wempe MF, Zoeller T, Buchanan NL, Lambert JL, Ramsey MG, et al. Improving glyburide solubility and dissolution by complexation with hydroxybutenyl-beta-cyclodextrin. J Pharm Pharmacol. 2009;61(1):23-30.

70. Latrofa A, Trapani G, Franco M, Serra M, Muggironi M, Fanizzi FP, et al. Complexation of phenytoin with some hydrophilic cyclodextrins: effect on aqueous solubility, dissolution rate, and anticonvulsant activity in mice. Eur J Pharm Biopharm. 2001; 52(1):65-73.

71. Cui L, Zhang Z, Sun E, Jia X, Qian Q. Effect of β-cyclodextrin complexation on solubility and enzymatic hydrolysis rate of icariin. J Nat Sci Biol Med. 2013;4(1):201-6.

72. Cui L, Zhang ZH, Sun E, Jia XB. Effect of β-cyclodextrin complexation on solubility and enzymatic conversion of naringin. Int J Mol Sci. 2012;13(11):14251-61.

73. Ansari MJ. Formulation and physicochemical characterization of sodium carboxy methyl cellulose and [beta] cyclodextrin mediated ternary inclusion complexes of silymarin. Int J Pharm Sci Res. 2016; 7(3):984-90.

74. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9(6):2950-67.

75. Bavishi DD, Borkhataria CH. Spring and parachute: How cocrystals enhance solubility. Prog Cryst Growth Charact Mater. 2016;62(3):1-8.

76. Sanphui P, Rajput L. Tuning solubility and stability of hydrochlorothiazide co-crystals. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014;70(Pt1):81-90.

77. Keramatnia F, Shayanfar A, Jouyban A. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH. J Pharm Sci. 2015;104(8):2559-65.

78. Alhalaweh A, Roy L, Rodríguez-Hornedo N, Velaga SP. pH-dependent solubility of indomethacin-saccharin and carbamazepine-saccharin cocrystals in aqueous media. Mol Pharm. 2012;9(9):2605-12.

79. Goud NR, Gangavaram S, Suresh K, Pal S, Manjunatha SG, Nambiar S, et al. Novel furosemide cocrystals and selection of high solubility drug forms. J Pharm Sci. 2012;101(2):664-80.

80. Suresh K, Goud NR, Nangia A. Andrographolide: solving chemical instability and poor solubility by means of cocrystals. Chem Asian J. 2013;8(12):3032-41.

81. Huang Y and Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2004;4(1):18-25.

82. Cho HJ, Jee JP, Kang JY, Shin DY, Choi HG, Maeng HJ, et al. Cefdinir Solid Dispersion Composed of Hydrophilic Polymers with Enhanced Solubility, Dissolution, and Bioavailability in Rats. Molecules. 2017;22(2). pii:E280.

83. Madgulkar A, Bandivadekar M, Shid T, Rao S. Sugars as solid dispersion carrier to improve solubility and dissolution of the BCS class II drug: clotrimazole. Drug Dev Ind Pharm. 2016;42(1):28-38.

84. Kim SM, Pang ZW, Tan HY, Shaikh M, Adinarayana G, Garg S. Enhancement of docetaxel solubility using binary and ternary solid dispersion systems. Drug Dev Ind Pharm. 2015;41(11):1847-55.

85. Lee SN, Poudel BK, Tran TH, Marasini N, Pradhan R, Lee YI, et al. A novel surface-attached carvedilol solid dispersion with enhanced solubility and dissolution. Arch Pharm Res. 2013;36(1):79-85.

86. Onoue S, Kojo Y, Aoki Y, Kawabata Y, Yamauchi Y, Yamada S. Physicochemical and pharmacokinetic characterization of amorphous solid dispersion of tranilast with enhanced solubility in gastric fluid and improved oral bioavailability. Drug Metab Pharmacokinet. 2012;27(4):379-87.

87. Joe JH, Lee WM, Park YJ, Joe KH, Oh DH, Seo YG, et al. Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int J Pharm. 2010;395(1-2):161-6.

88. Jung JY, Yoo SD, Lee SH, Kim KH, Yoon DS, Lee KH. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int J Pharm. 1999;187(2):209-18.

89. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal. 2014;96:10-20.

90. Zoghbi A, Geng T, Wang B. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol. AAPS PharmSciTech. 2017;18(8):2927-35.

91. Varshosaz J, Minayian M, Ahmadi M, Ghassami E. Enhancement of solubility and antidiabetic effects of Repaglinide using spray drying technique in STZ-induced diabetic rats. Pharm Dev Technol. 2017;22(6):754-63.

92. Herbrink M, Schellens JHM, Beijnen JH, Nuijen B. Improving the solubility of nilotinib through novel spray-dried solid dispersions. Int J Pharm. 2017;529(1-2):294-302.

93. Dhore PW, Dave VS, Saoji SD, Bobde YS, Mack C, Raut NA. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharm Dev Technol. 2017;22(1):90-102.

94. Rai VK, Dwivedi H, Yadav NP, Chanotiya CS, Saraf SA. Solubility enhancement of miconazole nitrate: binary and ternary mixture approach. Drug Dev Ind Pharm. 2014;40(8):1021-9.

95. Shaikh SM, Avachat AM. Enhancement of solubility and permeability of Candesartan cilexetil by using different pharmaceutical interventions. Curr Drug Deliv. 2011;8(4):346-53.

96. Li X, Yuan H, Zhang C, Chen W, Cheng W, Chen X, Ye X. Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension with solubility enhancement. J Pharm Pharmacol. 2016;68(8):980-8.

97. Nanotechnology Drug Delivery Market (By Technology - Nanocrystals, Nanoparticles, Liposomes, Micelles, Nanotubes, and Others; By Application - Neurology, Oncology, Cardiovascular/Physiology, Anti-inflammatory/Immunology, Anti-infective, and Others) - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2015 - 2023.Accessed on 26/11/2018.

98. Poste G, Papahadjopoulos D, and Vail WJ. Lipid vesicles as carriers for introducing biologically active materials into cells. Methods in Cell Biol. 1976;14:33-71.

99. Merisko-Liversidge E, Liversidge GG, and Cooper ER. Nanosizing: a formulation approach for poorly water-soluble compounds. Eur J Pharm Sci. 2004;18:113-20.

100. Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharma J. 2018;26(1):64-70.

101. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nature Rev Drug Disc. 2005;4(2):145.

102. Ansari MJ, Ahmed MM, Anwer MK, Jamil S, Alailaiwe A, Alshetaili AS, et al. Formulation and characterization of fluconazole loaded olive oil nano-emulsions. Indo Am J Pharm Sci. 2017, 4 (04), 852-60.

103. Ansari MJ. Factors Affecting Preparation and Properties of Nanoparticles by Nanoprecipitation Method. Indo Am. J. P. Sci. 2017; 4(12):4854-8.

104. Omolo CA, Kalhapure RS, Agrawal N, Rambharose S, Mocktar C, Govender T. Formulation and Molecular Dynamics Simulations of a Fusidic Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial Activity. Mol Pharm. 2018;15(8): 3512-26.

105. Aditya NP, Yang H, Kim S, Ko S. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids Surf B Biointerfaces. 2015;127:114-21.

106. Kassem MAA, ElMeshad AN, Fares AR. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box-Behnken Design. AAPS PharmSciTech. 2017;18(4):983-96.

107. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36-49.

108. Lee JS, Hong DY, Kim ES, Lee HG. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids Surf B Biointerfaces. 2017;154:171-7.

109. Arunkumar R, Prashanth KVH, Manabe Y, Hirata T, Sugawara T, Dharmesh SM, Baskaran V. Biodegradable Poly (Lactic-co-Glycolic Acid)-Polyethylene Glycol Nanocapsules: An efficient carrier for improved solubility, bioavailability, and anticancer property of lutein. J Pharm Sci. 2015;104(6):2085-93.

110. Groo AC, De Pascale M, Voisin-Chiret AS, Corvaisier S, Since M, Malzert-Fréon A. Comparison of 2 strategies to enhance pyridoclax solubility: Nanoemulsion delivery system versus salt synthesis. Eur J Pharm Sci. 2017;97:218-26.

111. Han M, He CX, Fang QL, Yang XC, Diao YY, Xu DH, He QJ, Hu YZ, Liang WQ, Yang B, Gao JQ. A novel camptothecin derivative incorporated in nano-carrier induced distinguished improvement in solubility, stability and anti-tumor activity both in vitro and in vivo. Pharm Res. 2009;26(4):926-35.

112. Bolko K, Zvonar A, Gašperlin M. Mixed lipid phase SMEDDS as an innovative approach to enhance resveratrol solubility. Drug Dev Ind Pharm. 2014;40(1):102-9.

113. Nandi I, Bari M, Joshi H. Study of isopropyl myristate microemulsion systems containing cyclodextrins to improve the solubility of 2 model hydrophobic drugs. AAPS PharmSciTech. 2003;4(1):E10.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2019 Autors

Downloads

Download data is not yet available.