Abstract
Bilayer and multi-layer tablets are enjoying growing popularity among original drug and generic product manufacturers. Multi-layer tablets have many key benefits compared to classic immediate-release tablets. The use of such solid oral dosage forms simplifies dosing regimens in combination therapy, and thus improves patient compliance. However, the technology of multilayer tablets is demanding and requires precise choice of excipients and production parameters with regard to each technological step. The main benefits of multi-layer tablets, certain aspects of their production and the challenges encountered during the compression process are reviewed in this paper.
References
1. Abdul S, Poddar SS. A flexible technology for modified release of drugs: multi layered tablets. J Control Release. 2004;97(3):393-405.
2. Al-Zoubi N, Malamataris S. Three-layer matrix tablets and simple approach of drug release programming. J Drug Del Sci Tech. 2008; 18(6):431-37.
3. Morita R, Honda R, Takahashi Y. Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS). II. In vitro and in vivo evaluation. J Control Release. 2000; 68(1):115-20.
4. Vergote GJ, Vervaet C, Van D, Hoste S, De Smed S, Demeester J, et al. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. Int J Pharm. 2001;219(1-2):81-7.
5. More S, Ghodekar S, Rane B, Bavaskar K, Patil M, Jain A. Multilayered tablet: a novel approach for oral drug delivery. IJPSR. 2015;9(3):872-82.
6. Dey S, Mahanti B, Khila S, Mazumder B, Gupta SD. Formulation development and optimization of bilayer tablets of aceclofenac. Expert Opin Drug Deliv. 2012;9(9):1041-50.
7. Patra CN, Kumar AB, Pandit HK, Singh SP, Devi MV. Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride. Acta Pharm. 2007;57(4):479-89.
8. Abebe A, Akseli I, Sprockel O, Kottala N, Cuitino AM. Review of bilayer tablet technology. Int J Pharm. 2014;461(1-2):549-58.
9. Klinzing G, Zavaliangos A. Understanding the effect of environmental history on bilayer tablet interfacial shear strength. Pharm Res. 2013;30(5):1300-10.
10. Anuar MS, Briscoe BJ. Interfacial elastic relaxation during the ejection of bi-layered tablets. Int J Pharm. 2010;387(1-2):42-7.
11. Wu CY, Seville JP. A comparative study of compaction properties of binary and bilayer tablets. Powder Tech. 2009;189:285-94.
12. McGinity JW. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Marcel Dekker. 1997;549-70.
13. Desai D, Wang J, Wen H, Li X, Timmins P. Formulation design, challenges, and development considerations for fixed dose combination (FDC) of oral solid dosage forms. Pharm Dev Technol. 2013;18(6):1265-76.
14. Nirmal J, Saisivam S, Peddanna C, Muralidharan S, Godwinkumar S, Nagarajan M. Bilayer tablets of atorvastatin calcium and nicotinic acid: formulation and evaluation. Chem Pharm Bull (Tokyo). 2008; 56(10):1455-8.
15. Scott DC, Hollenbeck RG. Design and manufacture of a zero-order sustained-release pellet dosage form through nonuniform drug distribution in a diffusional matrix. Pharm Res. 1991;8(2):156-61.
16. Shiyani B, Gattani S, Surana S. Formulation and evaluation of bi-layer tablet of metoclopramide hydrochloride and ibuprofen. AAPS Pharm Sci Tech. 2008;9(3):818-27.
17. Chidambaram N, Porter W, Flood K, Qiu Y. Formulation and characterization of new layered diffusional matrices for zero-order sustained release. J Control Release. 1998;52(1-2):149-58.
18. Conte U, Maggi L, Colombo P, La MA. Multi-layered hydrophilic matrices as constant release devices (GeomatrixTM Systems). J Control Release. 1993;26(1):39-47.
19. Nangia A, Molly T, Fahie BJ, Chopra SK. Novel regulated release systembased on geometric configuration. Proc Int Symp Control Release Bioactive Mater. 1995;22:294-5.
20. Ozeki Y, Ando M, Watanabe Y, Danjo K. Evaluation of novel one-step dry-coated tablets as a platform for delayed-release tablets. J Control Release. 2004;95(1):51-60.
21. Shivanand P, Sprockel O. A controlled drug delivery system. Int J Pharm. 1998;167:83-96.
22. Rathbone MJ, Hadgraft J, Roberts MS. Modified-Release Drug Delivery Technology. London: Informa Healthcare. 2002:101-14.
23. Rathbone MJ, Hadgraft J, Roberts MS. Modified-Release Drug Delivery Technology. London: Informa Healthcare. 2002:59-76.
24. Bettini R, Acerbi D, Caponetti G, Musa R, Magi N, Colombo P, et al. Influence of layer position on in vitro and in vivo release of levodopa methyl ester and carbidopa from three-layer matrix tablets. Eur J Pharm Biopharm. 2002;53(2):227-32.
25. Castrati L, Mazel V, Busignies V,Diarra H, Rossi A, Tchoreloff P, et al. Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets. Int J Pharm. 2016;513(1-2): 709-16.
26. Efentakis M, Peponaki C. Formulation study and evaluation of matrix and three-layer tablet sustained drug delivery systems based on Carbopols with isosorbite mononitrate. AAPS Pharm Sci Tech. 2008;9(3):917-23.
27. Li SP, Karth MG, Feld KM, Dipalo LC, Pendaharkar CM, Williams RO. Evaluation of bilayer tablet machines – a case study. Drug Dev Ind Pharm. 1995;21:571-90.
28. Vaithiyalingam SR, Sayeed VA. Critical factors in manufacturing multilay-ered tablets – assessing material attributes, in-process controls, manufacturingprocess and product performance. Int J Pharm. 2010;398:9-13.
29. Danckwerts MP. Development of a zero-order release oral comp-ressed tablet with potential for commercial tabletting production. Int J Pharm. 1994;112:34-45.
30. Hildgen D, McMullen JN. A new gradient matrix: formulation and characterization. J Control Release. 1995;34:263-71.
31. Bangalore S, Kamalakkannan G, Parkar S, Messerli FH. Fixed-dose combinations improve medication compliance: a meta-analysis. Am J Med. 2007;120(8):713-19.
32. Rathbone MJ, Hadgraft J, Roberts MS. Modified-Release Drug Delivery Technology. London: Informa Healthcare. 2002;1-19.
33. LaForce C, Gentile DA, Skoner DP. A randomized, double-blind, parallel-group, multicenter, placebo-controlled study of the safety and efficacy of extended-release guaifenesin/pseudoephedrine hydrochloride for symptom relief as an adjunctive therapy to antibiotic treatment of acute respiratory infections. Postgrad Med. 2008;120(2):53-9.
34. Qiu Y, Chidambaram N, Flood K. Design and evaluation of layered diffusional matrices for zero-order sustained-release. J Control Release. 1998;51(2-3):123-30.
35. Yadav G, Bansak M, ThakurN, Khare SP. Multilayer tablets and their drug release kinetic models for oral controlled drug delivery system. Middle-East J Sci Res. 2013;16(6):782-95.
36. Maroni A, Zema L, Carea M, Sangalli ME. Oral pulsatile drug delivery systems. Expert Opin Drug Deliv. 2005;2(5):855-71.
37. Akseli I, Abebe A, Sprockel O, Cuitino AM. Mechanistic characterization of bilayer tablet formulations. Powder Tech. 2013; 236:30-6.
38. Akseli I, Dey D, Cetinkaya C. Mechanical property characterization of bilayered tablets using nondestructive air-coupled acoustics. AAPS PharmSciTech. 2010;11(1):90-102.
39. Inman SJ, Briscoe BJ, Pitt KG. Topographic characterization of cellulose bilayered tablets interfaces. Chem Eng Res Dis. 2007;85(A7): 1005-12.
40. Busignies V, Mazel V, Diarra H, Tchoreloff P. Role of the elasticity of pharmaceutical materials on the interfacial mechanical strength of bilayer tablets. Int J Pharm. 2013;457(1):260-67.
41. Kottala N, Abebe A, Sprockel O, Bergum J, Nikfar F, Cuitino AM. Evaluation of the performance characteristics of bilayer tablets: Part I. Impact of material properties and process parameters on the strength of bilayer tablets. AAPS Pharm Sci Tech. 2012;13(4):1236-42.
42. Kottala N, Abebe A, Sprockel O, Akseli I, Nikfar F, Cuitino AM. Influence of compaction properties and interfacial topography on the performance of bilayer tablets. Int J Pharm. 2012;436(1-2):171-8.
43. Kottala N, Abebe A, Sprockel O, Akseli I, Nikfar F, Cuitino AM. Charac-terization of interfacial strength of layered powder-compacted solids. Powder Tech. 2013;239:300-7.
44. Tye CK, Sun CC, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci. 2005;94(3): 465-72.
45. Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59(5):688-91.
46. Wu CY, Best SM, Bentham AC, Hancock BC, Bonfield W. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders. Pharm Res. 2006;23(8):1898-1905.
47. Dietrich P, Bauer-Brandl A, Schubert R. Influence of tableting forces and lubricant concentration on the adhesion strength in complex layer tablets. Drug Dev Ind Pharm. 2000;26(7):745-54.
48. Malaterre V, Metz H, Ogorka J, Gurny R, Loggia N, Mader K. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push-pull osmotic controlled release systems. J Control Release. 2009;133(1):31-6.
49. Niwa M, Hiraishi Y, Iwasaki N, Terada K. Quantitative analysis of the layer separation risk in bilayer tablets using terahertz pulsed imaging. Int J Pharm. 2013;452(1-2):249-56.
50. Podczeck F. Theoretical and experimental investigations into the delamination tendencies of bilayer tablets. Int J Pharm. 2011; 408(1-2):102-12.
51. Yang L, Venkatesh G, Fassihi R. Compaction simulator study of a novel triple-layer tablet matrix for industrial tableting. Int J Pharm. 1997;152:45-52.
52. Karehill PG, Glaser M, Nystrom C. Studies on direct compression of tablets. XXIII. The importance of surface roughness for the compactability of some directly compressible materials with different bonding and volume reduction properties. Int J Pharm. 1990;64:35-43.
53. Busignies V, Mazel V, Diarra H, Tchoreloff P. Development of a new test for the easy characterization of the adhesion at the interface of bilayer tablets: proof-of-concept study by experimental design. Int J Pharm. 2014;477(1-2):476-84.
54. Takeuchi H, Yasuji T, Yamamoto H, Kawashima Y. Spray-dried lactose composite particles containing an ion complex of alginate-chitosan for designing a dry-coated tablet having a time-controlled releasing function. Pharm Res. 2000;17(1):94-9.
55. Podczeck F, Drake KR, Newton JM, Haririan I. The strength of bilayered tablets. Eur J Pharm Sci. 2006;29(5):361-6.
56. Podczeck F, Al-Muti E. The tensile strength of bilayered tablets made from different grades of microcrystalline cellulose. Eur J Pharm Sci. 2010;41(3-4):483-8.
57. Picker KM. Time dependence of elastic recovery for characterization of tableting materials. Pharm Dev Technol. 2001;6(1):61-70.
58. Goutte F, Guemguem F, Dragan C, Vergnault G, Wehrle P. Power of experimental design studies for the validation of pharmaceutical processes: case study of a multilayer tablet manufacturing process. Drug Dev Ind Pharm. 2002;28(7):841-8.
59. Sugisawa K, Kaneko T, Sago T, Sato T. Rapid quantitative analysis of magnesium stearate in pharmaceutical powders and solid dosage forms by atomic absorption: method development and application in product manufacturing. J Pharm Biomed Anal. 2009;49(3):858-61.
60. Yamamura T, Ohta T, Taira T, Ogawa Y, Sakai Y, Moribe K et al. Effects of automated external lubrication on tablet properties and the stability of eprazinone hydrochloride. Int J Pharm. 2009;370(1-2):1-7.
61. Cremer K, Asmussen B. Novel controlled-release tablet with erodible layers. Proc Int Control Release Bioact Mater. 1995;22:732-3.
62. Dietrich P, Cremer K, Bauer-Brandl A, Schubert R. Complex layer tablets-aspects of a new tabletting technology. Pharm Sci. 1998;1(1):318.
63. Dietrich P, Cremer K, Bauer-Brandl A, Schubert R. Adhesion strength in two-layer tablets. Pharm Res. 1997;14(11):429.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2019 Autors