Abstract
Guava (Psidium guajava L.) is a fruit tree largely used in folk medicine in tropical and subtropical areas. This exotic species was introduced in a botanical garden in the northeast of Algeria in the 1950’s. The aim of this study is to estimate, for the first time, the antioxidant and anticholinesterase activities of chloroform, ethyl acetate and n-butanol extracts of P. guajava growing in Algeria. Six antioxidant assays were tested, results showed very important efficiency in free radical scavenging, reducing power and β-carotene bleaching of tested extracts. Values of IC50 or A0.5 of some samples were lower than those of standards. With regard to anticholinesterase activity, the inhibitory of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was investigated. The extracts exhibited interesting capacity to inhibit these enzymes with low values of IC50 and even less than that of galanthamine. These activities were correlated with total phenolic content which was more important compared to the one found in extracts from trees growing in tropical and subtropical region. This could be due to resistance and adaptation of P. guajava grown in Algeria. The data obtained suggest the use of bioactive compounds from P. guajava leaves as antioxidant and drugs for symptomatic treatment of Alzheimer disease.
References
1. Yoshikawa T, Naito Y. What Is Oxidative Stress? J Am Vet Med Assoc. 2002;45(7):271-6.
2. Saxena M, Saxena J, Pradhan A. Flavonoids and phenolic acids as antioxidants in plants and human health. Int J Pharm Sci Rev Res. 2012;16(2):130-4.
3. Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J. et al. Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer’s Disease. Mediators Inflamm. 2015:1-17.
4. EtindelSosso FA, Nakamura O, Nakamura M. Epidemiology of Alzheimer’s disease: Comparison between Africa and South America. J Neurol Neuro Sci. 2017;8:3.
5. Augustinsson KB. Comparative Aspects of the Purification and Properties of Cholinesterases. B World Health Organ. 1971;44(1-2-3):79-89.
6. Kim D, Jeond S, Lee C. Antioxidant capacity of phenolic phyto-chemicals from various cultivars of plums. Food Chem. 2003; 81:321-6.
7. Juanda D, Aligita W, Elfahmi, Hartati R, Musaad S. Antioxidant and alpha glucosidase inhibition activity of kupa (Syzygium polychepalum Miq.) cortex. Int J Pharm Phytopharm Res. 2018;8(3):33-8.
8. Mahbubur Rahman HM. ,Zaman R. Taxonomy and Traditional Medicinal Plant Species of Myrtaceae (Myrtle) Family at Rajshahi District, Bangladesh. Int J Adv Res. 2015;3(10):1057-66.
9. El-Ahmady SH, Ashour ML, Wink M. Chemical composition and anti-inflammatory activity of the essential oils of Psidium guajava fruits and leaves. J Essent Oil Res. 2013;25(6):475-81.
10. Rojas-Garbanzo C. Psidium Fruits: Endemic fruits of latin America with a wide variety of phytochemicals. Clin Oncol. 2018;3:1479.
11. Hamada S, Kitanaka S. Method of treatment of atopic dermatitis with dried guava leaves. United States Patent. 1999;5:231.
12. Gutierrez RM, Mitchell S, Solis RV. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2008;117(1):1-27.
13. Chalabi R. Espèces fruitières de l’ancienne école d’agriculture de Skikda: Recensement et sauvegarde. Mémoire de magistère en Agronomie : University of Skikda, Algeria. 2014; p. 103.
14. Singleton VL, Rossi, JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagent. Am J Enol Vitic. 1965;16;144-58.
15. Muller L, Gnoyke S, Popken AM, Bohm V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci Technol. 2010;43(6):992-9.
16. Topçu G, Ay A, Bilici A, Sarıkürkcü C, Öztürk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007;103(3):816-22.
17. Blois MS. Antioxidants determination by the use of a stable free radical. Nature. 1958;26:1199-200.
18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7.
19. Bouratoua A, Khalfallah A, Bensouici C, Kabouche Z, AlabdulMagi A, Harakat D. et al. Chemical composition and antioxidant activity of aerial parts of Ferula longipes Coss. ex Bonnier and Maury. Nat Prod Res. 2017;32(16):1873-80.
20. Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 2008;76(4):899-905.
21. Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52 (26):7970-81.
22. Marco GJ. A rapid method for evaluation of antioxidants. J Am Oil Chem Soc. 1968;45, 594-8.
23. Ellman GL, Courtney D, Andies V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7, 88-95.
24. Xiaoyong S, Luming C. Phenolic constituents, antimicrobial and antioxidant properties of blueberry leaves (V5). J Food Nutr Res. 2014;2(12):973-9.
25. Adewusi E. A, Moodley N, Steenkamp V. Medicinal plants with cholinesterase inhibitory activity: A Review. Afr J Biotechnol. 2010;9(49):8257-76.
26. Mouffouk C, Hambaba L, Haba H, Mouffouk S, Bensouici C, Mouffouk S. et al. Acute toxicity and in vivo anti inflammatory effects and in vitro antioxidant and anti arthritic potential of Scabiosa stellate. Orient Pharm Exp Med. 2018;8(5).
27. Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilisleptophylla L. BMC Complement Altern Med. 2012;12:221.
28. Babbar N, Oberoi HS, Sandhu SK, Bhargav VK. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol. 2012;51(10):2568-75.
29. Chang YS. The bioactive constituents of aqueous guava budding leaf extract and their apoptotic mechanism on DU145 prostate cancer cells, M.S. thesis, Research Institute of Biotechnology: Hungkuang University.
30. Vieira Braga T, Gonçalves Rodrigues das Dores R, Soncin Ramos C, Gontijo Evangelista FC, Márcia da Silva Tinoco L, de PillaVarotti F. et al. Antioxidant, antibacterial and antitumor activity of ethanolic extract of the Psidium guajava leaves. Am J Plant Sci. 2014;5:3492-500.
31. Fernandes MRV, Dias ALT, Carvalho RR, Souza CRF, Oliveira WP. Antioxidant and antimicrobial activities of Psidium guajava L. spray dried extracts. Ind. Crops Prod. 2014;60:39-44.
32. Kawakami Y, Nakamura T, Hosokawa T, Suzuki-Yamamoto T, Yamashita H, Kimoto M, et al. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms. Prostaglandins Leukot Essent Fatty Acids. 2009;80(5-6):239-45.
33. Chen KC, Hsieh CL, Huang KD, Ker YB, Chyau CC, Peng RY. Anticancer activity of rhamnoallosan against DU-145 cells is kinetically complementary to coexisting polyphenolics in Psidium guajava budding leaves. J. Agric. Food Chem. 2009;57(14):6114-22.
34. Jang M, Jeong S.W, Cho SK, Ahn KS, Kim BK, Kim JC. Anti-inflammatory effects of 4 medicinal plant extracts in lipopolysaccharide-induced RAW 264.7 cells. Food Sci Biotechnol. 2013;22(S):213-20.
35. Hacibekiroglu I, Kolak U. Screening antioxidant and anticholine-sterase potential of Iris albicans extracts. Arab J Chem. 2015;8(2): 264-8.
36. Qian H, Nihorimbere V. Antioxidant power of phytochemicals from Psidium guajava leaf. J Zhejiang Univ Sci. 2004;5(6):676-83.
37. Seo J, Lee S, Elam ML, Johnson SA, Kang J, Arjmandi BH. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci Nutr. 2014;2(2):174-80.
38. Norhidayah A, Babji AS, Shazali MS, Norazmir MN, Norazlanshah H. Effects of Mango (Mangifera indica L.) and Guava (Psidium guajava L.) Extract on Frozen Chicken Meat Balls’ Storage Quality. Pak J Nutr. 2011;10(9):879-83.
39. Ramadhania ZM, Insanu M, Gunarti NS, Wirasutisna KR, Sukrasno S, Hartati R. Antioxidant activity from ten species of Myrtaceae. Asian J Pharm Clin Res. 2017;Special issue:5-7.
40. Roseiro LB, PilarRauter A, MouratoSerralheirob ML. Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. J Nutr Aging. 2012;1(2):99-111.
41. Kulbat K. The role of phenolic compounds in plant resistance. Biotechnol Food Sci. 2016;80 (2):97-108
42. Cheruiyot EK, Mumera LM, Ngetich WK, Hassanali A, Wachira F. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem. 2007;71(9):2190-7.
43. Jimenez EA, Rincon M, Pulido R, Saura CF. Guava fruit as a new source of antioxidant dietary fibre. J Agric Food Chem. 2001;49: 5489-93.
44. Thaipong K, Boonprakob U, Cisneros-Zevallos L, Byrne DH. Hydrophilic and lipophilic antioxidant activities of guava fruits. Southeast Asian J Trop Med Public Health. 2005;36(S4):254-7.
45. Hsieh CL, Huang CN, Lin YC, Peng RY. Molecular action mechanism against apoptosis by aqueous extract from guava budding leaves elucidated with human umbilical vein endothelial cell (HUVEC) model. J Agric Food Chem. 2007;55(21):8523-33.
46. Tachakittirungrod S, Ikegami F, Okonog S. Antioxidant Active Principles Isolated from Psidium guajava Grown in Thailand. Sci Pharm. 2007;75(4):179-93.
47. Udoidong AA, Etuk BA, Udo IE. Phytochemical and chromatogra-phic analysis of chloroform extract of Marsdenia latifelia. Adv Appl Sci Res. 2014;5(1):53-8.
48. Gasca CA, Castillo WO, Takahashi CS, Fagg CW, Magalhaes PO, Fonseca-Bazzo YM. et al. Assessment of anti-cholinesterase activity andcytotoxicity of cagaita (Eugenia dysenterica) leaves. Food Chem Toxicol. 2017;109(Pt 2):996-1002.
49. Kitphati W, Wattanakamolkul K, Lomarat P, Phanthong P, Anantachoke N, Nukoolkarn V. et al. Anticholinesterase of essential oils and their constituents from Thai medicinal plants on purified and cellular enzymes. JAASP. 2012;1(1):58-67.
50. Parle M, Broka E. Guava: A promising memory enhancer in rodents. Int J Plant Sci. 2010;5(1):297-301.
51. Ashrafpour M, Parsaei S, Sepehri H. Quercetin improved spatial memory dysfunctions in rat model of intracerebroventriculars treptozotocin-induced sporadic Alzheimer’sdisease. Natl J Physiol Pharm Pharmacol. 2015;5(5):411-5.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2019 Autors