Synthesis and anticancer properties of bacterial cellulose-magnesium oxide bionanocomposite
PDF

Keywords

cytotoxicity
magnesium oxide nanoparticles
bacterial cellulose
biopolymer
nanocomposite
Taguchi method

Abstract

Given the increase in global mortality rate due to various types of cancer, the present study aimed to develop optimal conditions for the synthesis of cellulose-magnesium oxide nanocomposite with favorable anticancer activity. For this purpose, the Taguchi method was used to design nine experiments with varied ratios of cellulose biopolymer, magnesium oxide nanoparticles and different stirring times. The scanning electron microscopy (SEM) images confirmed the formation of cellulose-magnesium oxide nanocomposite. The anticancer activity level of nine nanocomposites studied was evaluated using MTT assay on Michigan Cancer Foundation-7 (MCF-7) cell line.
The nanocomposite synthesized in experiment 9 (8 mg/ml of magnesium oxide, 2 mg/ml of cellulose and stirring time of 60 min) showed the highest growth inhibitory activity on the cancer cells. Based on the attained results,e cellulose-magnesium oxide nanocomposite synthesized in optimal conditions can be used as an eligible anticancer agent.

PDF

References

1. Wang YJ, Larsson M, Huang WT, Chiou SH, Nicholls SJ, Chao JI, et al. The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Prog Polym Sci. 2016;57: 153-78.

2. Mozaffari HR, Zavattaro E, Abdolahnejad A, Lopez-Jornet P, Omidpanah N, Sharifi R, et al. Serum and Salivary IgA, IgG, and IgM Levels in Oral Lichen Planus: A Systematic Review and Meta-Analysis of Case-Control Studies. Medicina. 2018;54(6):99.

3. Mozaffari HR, Sharifi R, Sadeghi M. Interleukin-6 levels in the serum and saliva of patients with oral lichen planus compared with healthy controls: a meta-analysis study. Centr Eur J Immunol. 2018;43(1):103-8.

4. Taran M, Etemadi S, Safaei M. Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II, III) oxide–levan nanocomposite. J Appl Polym Sci. 2017;134(12):44613.

5. Safaei M, Taran M. Fabrication, characterization, and antifungal activity of sodium hyaluronate-TiO2 bionanocomposite against Aspergillus niger. Mater Lett. 2017;207:113-6.

6. Devadasu VR, Alshammari TM, Aljofan M. Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int J Diabetes Dev Ctries. 2018;38:11-9.

7. Sharifi R, Nazari H, Bolourchi P, Khazaei S, Parirokh M. The most painful site of maxillary anterior infiltrations. Dent Res J (Isfahan). 2016;13(6):539-43.

8. Veehof MM, Oskam MJ, Schreurs KM, Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 2011;152(3):533-42

9. Sharifi R, Khazaei S, Mozaffari HR, Amiri SM, Iranmanesh P, Mousavi SA. Effect of massage on the success of anesthesia and infiltration injection pain in maxillary central incisors: Double-blind, crossover trial. Dent Hypotheses. 2017;8(3):61-4.

10. Mozaffari HR, Izadi B, Sadeghi M, Rezaei F, Sharifi R, Jalilian F. Prevalence of oral and pharyngeal cancers in Kermanshah province, Iran: A ten-year period. Int J Cancer Res. 2016;12(3-4):169-75.

11. Mozaffari HR, Payandeh M, Ramezani M, Sadeghi M, Mahmoudiahmadabadi M, Sharifi R. Efficacy of palifermin on oral mucositis and acute GVHD after hematopoietic stem cell transplantation (HSCT) in hematology malignancy patients: a meta-analysis of trials. Wspolczesna Onkol. 2017;21(4):299-305.

12. Ma X, Yu H. Cancer issue: global burden of cancer. Yale J Biol Med. 2006;79(3-4):85-94.

13. Antoni S, Soerjomataram I, Moller B, Bray F, Ferlay J. An assessment of GLOBOCAN methods for deriving national estimates of cancer incidence. Bull World Health Organ. 2016; 94(3):174-84.

14. Benson JR, Jatoi I. The global breast cancer burden. Future Oncol. 2012;8(6):697-702.

15. Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine. 2007;3(1): 20-31.

16. Patel MK, Zafaryab M, Rizvi M, Agrawal VV, Ansari ZA, Malhotra BD, Ansari SG. Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. J Nanoeng Nanomanuf. 2013;3(2):162-6.

17. Sugirtha P, Divya R, Yedhukrishnan R, Suganthi KS, Anusha N, Ponnusami V, Rajan KS. Green synthesis of magnesium oxide nanoparticles using brassica oleracea and punica granatum peels and their anticancer and photocatalytic activity. Asian J Chem. 2015; 27(7):2513.

18. Karthik K, Dhanuskodi S, Kumar SP, Gobinath C, Sivaramakrishnan S. Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett. 2017;206:217-20.

19. Safaei M, Taran M. Optimized synthesis, characterization, and antibacterial activity of an alginate-cupric oxide bionanocomposite. J Appl Polym Sci. 2018;135(2):45682.

20. Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose: fermentative production and applications. Food Technol Biotechnol. 2009;47(2):107-24.

21. Gupta VK, Zeilinger S, Ferreira Filho EX, Duran-Dominguez-de-Bazua MC, Purchase D. Microbial Applications: Recent Advancements and Future Developments. Walter de Gruyter GmbH & Co KG 2017; pp.1-388.

22. Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol. 2008;57(5):449-53.

23. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim, SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem. 2012;22(47):24610-17.

24. Safaei M, Taran M. Optimal conditions for producing bactericidal sodium hyaluronate-TiO2 bionanocomposite and its characterization. Int J Biol Macromol. 2017;104:449-56.

25. Rezaei R, Mostafaie A, Gorgin Karaji A, Mansouri K. The effect of standardized extract of Echinacea Purpurea on cytotoxicity and proliferation of rat splenocytes. Journal of Applied Biological Sciences. 2015;9(2):19-22.

26. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063-77.

27. Vinardell MP, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials. 2015;5(2):1004-21.

28. Ge S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, Dong Q, Yin T. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET nanobiotechnology. 2011;5(2):36-40.

29. Caputo F, De Nicola M, Ghibelli L. 2014. Pharmacological potential of bioactive engineered nanomaterials. Biochem Pharmacol. 2014;92(1):112-30.

30. Davis ME, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9): 771-82.

31. Bisht G, Rayamajhi S. ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine. 2016;3:9.

32. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009;2(11):882-90.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2019 Autors

Downloads

Download data is not yet available.