Abstract
The treatment of neoplastic and neurodegenerative diseases is still difficult. This because the cytostatic drugs have adverse effects on healthy organs. Among the drugs that have been investigated in the therapy of cancers and multiple sclerosis are the purine analogues. The aim of our study was the evaluation of the effect of cladribine on the process of autophagy in the healthy pancreas via two dosage models.
The experiment was conducted on female Wistar rats which were placed within the experimental and control groups of two dosage models: model (A) - cladribine being administered in a daily dose of 0.1 mg/kg by weight for 7 days, and model (B) - cladribine being administered in a daily dose of 0.07 mg/kg by weight in 3 cycles of 6 days with 5 weeks break. A-bis and B-bis groups were included within, respectively, groups A and B. Here, decapitation occurred after 4 weeks break in drug administration. In our work, autophagy was investigated via the expression of the LC3B protein (Light Chain 3B protein). The comparison of the results of many independent trials was built upon the use of the Kruskal-Wallis non-parametric test. Significance was set at p < 0.005.
In our results, average LC3B expression was observed in 100% of all cells in the group A, 70% in group B and 60% in group B-bis. We not observed average LC3B expression in the other groups. Moreover, a poor reaction was observed in 55% of all cells in group A-bis. We noted significant relationships between control group and group A, between the control group and group B, and between group A-bis and groups B and B-bis. These results demonstrate that cladribine has led to the induction of autophagy in the pancreatic islet cells.
References
1. Aghajan M., Li N., Karin M.: Obesity, autophagy and the pathogenesis of liver and pancreatic cancers. J Gastroenterol Hepatol., 27, 10, 2012. doi: 10.1111/j.1440-1746.2011.07008.x.
2. Agostini S. et al.: A new dual-promotor system for cardiomyocyte – specific conditional induction of apoptosis. Biomed Res Int., 13, 2013, doi:10.1155/2013/845816.
3. Barth S., Glick D., Macleod K.F.: Autophagy: assays and artifacts. J. Pathol., 221, 117, 2010.
4. Bergamini E. et al.: The anti-aging effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother., 57, 203, 2003.
5. Burgoyne L.A.: The Mechanisms of Pyknosis: Hypercondensation and Death. Experimental Cell Research, 248, 214, 1999.
6. Cardoen S. et al.: Effects of 2-Chloro-2’-Deoxyadenosine on the Cell Cycle in the Human Leukemia EHEB Cell Line. Nucleosides, Nucleotides & Nucleic Acids, 23, 1425, 2004.
7. Chilmonczyk Z.: Receptory śmierci - cel molekularny leków przeciwnowotworowych. Gazeta Farmaceutyczna, 1, 34, 2009.
8. Chylińska-Wrzos P. et al.: Expression of p53 protein and the histomorphological view of epidermis in experimental animals after cladribine application. IJVR, 15, 198, 2014.
9. Chylińska-Wrzos P. et al.: The intrinsic or the extrinsic pathways of apoptosis in the epidermis after cladribine application? Journal of Biomedical Science and Engineering, 6/3, 265, 2013.
10. Deretic V.: Autophagy in innate and adaptive immunity. Trends Immunol., 2, 523, 2005.
11. Deretic V., Saitoh T., Akira S.: Autophagy in infection, inflammation and immunity. Nat Rev Immunol., 13, 10, 722, 2013.
12. Fischer U., Schulze-Osthoff K.: New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev., 57, 187, 2005.
13. Fortunato F. et al.: Impaired Autolysosome Formation Correlates With Lamp-2 Depletion: Role of Apoptosis, Autophagy, and Necrosis in Pancreatitis. Gastroenterology, 137, 350, 2009.
14. Fujii S. et al.: Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci., 99, 1813, 2008.
15. Glick D., Barth S., Macleod K.F.: Autophagy: cellular and molecular mechanisms. J. Pathol., 221, 3, 2010.
16. Hashimoto D. et al.: Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer, 50, 1382, 2014.
17. Jasinski L. et al.: A comparison of caspase 3 expression in the endocrine and exocrine parts of the pancreas after cladribine application according to the “leukemic” schema. Curr Issues Pharm Med Sci., 30, 9, 2017.
18. Jędrych M. et al.: Immunohistochemical evaluation of cell proliferation and apoptosis markers in ovarian surface epithelial cells of cladribine-treated rats. Protoplasma, 250, 1025, 2013.
19. Klionsky D.J. et al.: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryo. Autophagy, 4, 151, 2008.
20. Leist T.P., Weissert R.: Cladribine: Mode of Action and Implications for Treatment of Multiple Sclerosis. Clin Neuropharm., 34, 28, 2011.
21. Mukubou H. et al.: The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol., 37, 821, 2010.
22. Ozaki N. et al.: Autophagy regulation in pancreatic acinar cells is independent of epidermal growth factor receptor signaling. Biochem Biophys Res Commun., 446, 224, 2014.
23. Pardo R. et al.: Gemcitabine induces the VMP-1 mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells. Pancreatology, 10, 19, 2010.
24. Petrie A., Sabin C. editors (2006). Statystyka medyczna w zarysie. Warszawa, PZWL.
25. Ricci M., Zong W.: Chemotherapeutic approaches for targeting cell death pathways. Oncologist, 11, 342, 2006.
26. Rivera J. et al.: Autophagy defends pancreatic beta cells from human islet amyloid polypepetide - induced toxity. J. Clin Invest., 124, 8, 3489-500, 1981, doi: 10.1172/JCI71981.
27. Ropolo A. et al.: Chemotherapy and autophagy-mediated cell death in pancreatic cancer cells. Pancreatology, 12, 1, 2012.
28. Rosenfeldt M. et al.: p53 status determines the role of autophagy in pancreatic tumour development. Nature, 12, 504, 296, 2013.
29. Sau W.H., Mody H.R., Rajgopal G.: Overcoming nucleoside analog chemoresistance of pancreatic cancer: A therapeutic challenge. Cancer Letters, 320, 138, 2012.
30. Shuang W. et al.: Pancreatic islet cell autophagy during aging in rats. Clin Invest Med., 36, 2, E72-E80, 2013.
31. Smolewski P., Darzynkiewicz Z.: Współczesne metody badania apoptozy. Acta Haematologica Polonica, 34, 35, 2003.
32. Stachura J. (2003). Uszkodzenie i śmierć komórki. In: Patologia znaczy słowo o chorobie, vol I - patologia ogólna. Stachura J., Domagała W. (editors). PAU, Kraków, PUK; p. 12-13.
33. Stanisz A. editor (2005). Biostatystyka. Podręcznik dla studentów i lekarzy. Kraków, WUJ.
34. Vernon P.J., Tang D.: Eat-me: autophagy, phagocytosis, and reactive oxygen species signaling. Antioxid. Redox Signaling, 18, 677, 2013.
35. Wawryk-Gawda E. et al.: Use of selected purine analogs in neoplastic and autoimmune diseases. Annales Universitatis Mariae Curie-Skłodowska, Sectio DDD: Pharmacia, 24/4, 29, 2011.
36. Wawryk-Gawda E. et al.: Intrinsic apoptosis pathway in fallopian tube epithelial cells induced by cladribine. Scientific World Journal, 2, 928036, 2014, doi: 10.1155/2014/928036.
37. Wawryk-Gawda E. et al.: P53 protein in proliferation, repair and apoptosis of cells. Protoplasma, 251, 525, 2014.
38. Yang A. et al.: Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov., 4, 905, 2014.
39. Yang S. et al.: Pancreatic cancers require autophagy for tumor growth. Genes Dev., 25, 717, 2011.
40. Zulian G.B. (1994). A review of fludarabine and cladribine in solid tumors. In: Innovate Antimetabolites’ in Solid Tumors. Aapro M.S. (editor). Berlin, Springer Verlag; p. 29-3.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2017 Authors