Abstract
Addiction is a chronic and recurrent disease. In its pathology, neuroadaptive changes within the dopaminergic pathways inside the mesolimbic system play a predominant role. Of note, the manner in which various neurotransmitters act on their receptors, may modulate the addictive process. Adenosine, an important neuromodulator in the central nervous system, is able to modify the opioid dependence, doing so mainly by its activity on the adenosine A1 and A2A receptors. In the present manuscript, the actual state of knowledge on the relationships between adenosinergic receptors and opioid dependence has been described. Various literature data on the involvement of adenosine ligands, mainly in the signs of morphine withdrawal, as well as morphine-induced sensitization, were also collected. Additionally, in this paper, some important interactions between adenosine and other neurotransmitters (e.g. dopamine, glutamate) are described. It is put forward that these connections are the major mechanism of involvement of the adenosinergic system in morphine addiction. The repeatedly confirmed effectiveness of adenosine ligands in morphine dependence, as seen in various experimental protocols, suggests that adenosine ligands may be useful tools for developing new strategies for attenuating morphine dependence.
References
1. Ahlijanian M.K., Takemori A.E.: Changes in adenosine receptor sensitivity in morphine-tolerant and – dependent mice. J. Pharmacol. Exp. Ther., 236, 615-620, 1986.
2. Ahlijanian M.K., Takemori A.E.: Effects of /-/-N6-(R-phenylisopropyl)-adenosine (R-PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur. J. Pharmacol., 112, 171-179, 1985.
3. Ahlijanian M.K., Takemori A.E.: The effect of chronic administration of caffeine on morphine-induced analgesia, tolerance and dependence in mice. Eur. J. Pharmacol., 120, 25-32, 1986.
4. Al-Hasani R., Bruchas M.R.: Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior. Anesthesiology, 115(6), 1363-1381, 2011.
5. Allgaier C., Hertting G., Kügelgen O.V.: The adenosine receptor-mediated inhibition of noradrenaline release possibly involves an N-protein and is increased by alpha 2-autoreceptor blockade. Br. J. Pharmacol., 90(2), 403-412, 1987.
6. Barth A. et al.: Neurotoxicity in organotypic hippocampal slices mediated by adenosine analogues and nitric oxide. Brain Res., 762, 79-88, 1997.
7. Belardinelli L., Linden J., Berne R.M.: The cardiac effects of adenosine. Prog. Cardiovasc. Dis., 32, 73-97, 1989.
8. Brailowsky S. et al.: Morphine-theophylline interaction: antagonism or facilitation? Br. J. Pharmacol., 73, 887-92, 1981.
9. Brundege J.M., Williams J.T.: Increase in adenosine sensitivity in the nucleus accumbens following chronic morphine treatment. J. Neurophysiol., 87, 1369-1375, 2002.
10. Capasso A.: Adenosine receptors are involved in the control of acute naloxone-precipitated withdrawal: in vitro evidence. Life Sci., 66, 873-883, 2000.
11. Carr G.D., Fibiger H.C., Phillips A.G. (1989). Conditioned place preference as a measure of drug reward. In: The neuropharmacological basis of reward. Lieberman J.M., Cooper S.J.(editors). Oxford: Oxford University Press; p. 264-319.
12. Chen J., Van Praag H.M., Gardner E.L.: Activation of 5-HT, receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res., 543, 354-357, 1991.
13. Ciruela F. et al.: Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci., 26, 2080-2087, 2006.
14. Collier H.O.J., Francis D.L.: Morphine abstinence is associated with increased brain cyclic AMP. Nature, 255, 159-162, 1975.
15. Coradetti R. et al.: Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur. J. Pharmacol., 104, 19-26, 1984.
16. de Mendonça A., Sebastião A.M., Ribeiro J.A.: Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport, 6, 1097-1100, 1995.
17. De Montis M.G. et al.: Decreased adenosine A2 receptor function in morphine dependent rats. Pharmacol. Res., 25, 232-233, 1992.
18. Dhalla A.K. et al.: Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr. Top. Med. Chem., 3, 369-385, 2003.
19. DiChiara G., Imperato A.: Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA., 85, 5274-5278, 1988.
20. DiChiara G., Imperato A.: Opposite effects of mu and kappa opiate agonist on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J. Pharm. Exp. Ther., 244, 1067-1080, 1988.
21. Dixon D.A. et al.: Indirect modulation of dopamine D2 receptors as potential pharmacotherapy for schizophrenia: I. Adenosine agonists. Ann. Pharmacother., 33(4), 480-488, 1999.
22. Dubey R.K. et al.: Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: Role of A2B receptors. Circulation, 96, 2656-2666, 1997.
23. Ferré S. et al.: Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonists binding sites. Neurosci. Lett., 208, 109-112, 1996.
24. Ferré S.: Adenosine – dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology, 133, 107-120, 1997.
25. Ferré S. et al.: Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. USA., 88, 7238-7241, 1991.
26. Ferré S., Rubio A., Fuxe K.: Stimulation of adenosine A2 receptors induces catalepsy. Neurosci. Lett., 130, 162-164, 1991.
27. Fink J.S. et al.: Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain. Res. Mol. Brain Res., 14, 186-195, 1992.
28. Fishman P. et al.: Adenosine acts as a chemoprotective agent by stimulating G-CSF production: a role for A1 and A3 adenosine receptors. J. Cell Physiol., 183, 393-398, 2000.
29. Fishman P. et al.: The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res., 269, 230-236, 2001.
30. Fishman P., Bar-Yehuda S.: Pharmacology and therapeutic applications of A3 receptor subtype. Curr. Top. Med. Chem., 3, 463-469, 2003.
31. Fredholm B.B. et al.: International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev., 53, 527-552, 2001.
32. Ho E.L. et al.: Effect of cyclic nucleotides and phosphodiesterase inhibition on morphine tolerance and physical dependence. Life Sci., 16, 1895-1900, 1975.
33. Jarvis M.F., Williams M.: Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2 selective agonists, [3H]-CGS 21680. Eur. J. Pharmacol., 168, 243-246, 1989.
34. Jin C. et al.: Withdrawal-induced c-Fos expression in the rat centromedial amygdala 24 h following a single morphine exposure. Psychopharmacology, 175, 428-435, 2004.
35. Kaplan G.B., Leite-Morris K.A., Sears M.T.: Alterations in adenosine A1 receptors in morphine dependence. Brain Res., 657, 347-350, 1994.
36. Kaplan G.B., Leite-Morris K.A.: Up-regulation of adenosine transporter-binding sites in striatum and hypothalamus of opiate tolerant mice. Brain Res., 763, 215-220, 1997.
37. Kitakaze M., Hori M.: Adenosine therapy: a new approach to chronic heart failure. Expert Opin. Investig. Drugs., 9, 2519-2535, 2000.
38. Koob G.F., Volkow N.D.: Neurocircuitry of addiction. Neuropsychopharmacology, 35, 217-238, 2010.
39. Ledent C. et al.: Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature, 388, 674-678, 1997.
40. Li H., Henry J.L.: Adenosine receptor blockade reveals N-methyl-D-aspartate receptor- and voltage-sensitive dendritic spikes in rat hippocampal CA1 pyramidal cells in vitro. Neuroscience, 100, 21-31, 2000.
41. Linden J.: Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol., 41, 775-787, 2001.
42. Listos J., Poleszak E., Malec D.: The influence of adenosine receptor agonists and antagonists on morphine place preference in rats. Annales UMCS, Pharmacia, sectio DDD, 15(1), 185–200, 2002.
43. Listos J., Talarek S., Fidecka S.: Involvement of adenosine receptor agonists on the development of hypersensitivity to acute dose of morphine during morphine withdrawal period. Pharmacol Rep. 60(5), 679-685, 2008.
44. Lopes L.V. et al.: Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience, 112, 319-329, 2002.
45. Maldonado R.: The neurobiology of addiction. J. Neural. Transm., 66, 1-14, 2003.
46. Malec D., Poleszak E.: Cataleptogenic activity of adenosine analogues in rats. Annales UMCS section DDD, 11, 51-63, 1998.
47. Malec D.: Purinergic receptors. Pol. J. Pharmacol., 48, 457-465, 1996.
48. Marchi M. et al.: Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br. J. Pharmacol., 136, 434-440, 2002.
49. Matsuda K.: Experimental studies on the effective procedure to inhibit the development of tolerance to and dependence on morphine. Arzneimittelforschung, 20, 1596-1604, 1970.
50. Mayfield R.D, Suzuki F., Zahniser N.R.: Adenosine A2A receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J. Neurochem., 60, 2334-2337, 1993.
51. Michalska E., Malec D.: Agonists and antagonists of adenosine receptors and morphine withdrawal syndrome in rats. Pol. J. Pharmacol., 45, 1-9, 1993.
52. Miura T. et al.: Roles of mitochondrial ATP-sensitive K channels and PKC in anti-infarct tolerance afforded by adenosine A1 receptor activation. J. Am. Coll. Cardiol., 35, 238-245, 2000.
53. Munro R. et al.: Differential expression of adenosine A2A and A2B receptor subtypes on myeloid U937 and THP-1 cells: Adenosine A2B receptor activation selectively stimulates cAMP formation and inhibition of TNF-α release in THP-1 cells. Drug Dev. Res., 44, 41-47, 1998.
54. Noda Y., Nabeshima T.: Opiate physical dependence and N-methyl-D-aspartate receptors. Eur. J. Pharmacol., 500, 121-128, 2004.
55. O’Neill C. et al.: Adenosine A1 receptor mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors. Eur. J. Neurosci., 26, 3421-3428, 2007.
56. Peyot M.L. et al.: Extracellular adenosine induces apoptosis of human arterial smooth muscle cells via A2B-purinoreceptor. Circ. Res., 86, 76-85, 2000.
57. Rebola N. et al.: Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron, 57, 121-134, 2008.
58. Ribeiro J.A., Sebastião A.M., de Mendonca A.: Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol., 68, 377-392, 2002.
59. Robinson T.E, Berridge K.C.: Incentive-sensitization and addiction. Addiction, 96, 103-114, 2001.
60. Robinson T.E., Berridge K.C.: The incentive sensitization theory of addiction: some current issues. Phil. Trans. R. Soc. B., 363, 3137-3146, 2008.
61. Sawynok J.: Topical and peripherially acting analgesics. Pharmacol. Rev., 55, 1-20, 2003.
62. Schiffmann S.N., Jacobs O., Vanderhaeghen J.J.: Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J. Neurochem., 57, 1062-1067, 1991.
63. Sebastião A.M., Ribeiro J.A.: Adenosine receptors and the central nervous system. Handb. Exp. Pharmacol., 193, 471-534, 2009.
64. Shahidi S., Hashemi-Firouzi N.: The effects of a 5-HT7 receptor agonist and antagonist on morphine withdrawal syndrome in mice. Neurosci. Lett., 578, 27-32, 2014.
65. Shindou T. et al.: Adenosine A2A receptor enhances GABA (A)-mediated IPSCs in the rat globus pallidus. J. Physiol., 532, 423-434, 2001.
66. Song Y. et al.: Selective attenuation of isoproterenol-stimulated arrhythmic activity by a partial agonist of adenosine A1 receptor. Circulation, 105, 118-123, 2002.
67. Spanagel R., Weiss F.: The dopamine hypothesis of reward: past and current status. Trends Neurosci., 22, 521-527, 1999.
68. Trescot A.M. et al.: Opioid Pharmacology. Pain Physician., 11, 133-153, 2008.
69. Van Schaick E.A. et al.: Metabolic and cardiovascular effects of the adenosine A1 receptor agonist N6-(p-Sulfophenyl) adenosine in diabetic zucker rats: Influence of the disease on the selectively of action. J. Pharmacol. Exp. Ther., 287, 21-30, 1998.
70. Vanderschuren L.J., Kalivas P.W.: Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology, 151(2-3), 99-120, 2000.
71. Wardas J., Konieczny J., Lorenc-Koci E.: SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse, 41(2), 160-171, 2001.
72. Wilcox C.S. et al.: Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J. Am. Soc. Nephrol., 10, 714-720, 1999.
73. Wolf M.E.: LTP may trigger addiction. Mol. Interv., 3, 248-252, 2003.
74. Wood P.L. et al.: Inhibition of nigrostriatal release of dopamine in the rat by adenosine receptor agonists: A1 receptor mediation. Neuropharmacology, 28, 21-25, 1989.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2015 Authors