Identification of <i>Bacillus</i> spp. colonizing the nasal mucosa of healthy adults living in the suburban area using the matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) system
PDF

Keywords

nasal mucosa
Bacillus spp.
MALDI-TOF MS

Abstract

Bacillus spp. can be regarded as a rare component of the nasal mucosa microflora.
The aim of this study was to identify Bacillus spp. from the nasal mucosa of healthy adults living in the suburban area near Lublin using the matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) system.
A total of 11 bacterial isolates from the nasal specimens were cultured. The following species were identified using the routine microbiological methods: Staphylococcus aureus (3 isolates), S. epidermidis (1 isolate), S. intermedius (1 isolate) and Staphylococcus spp. (1 isolate). Moreover, 2 strains of Escherichia coli were isolated. Besides, 3 isolates of Bacillus spp. were found. These isolates were characterized by means of MALDI-TOF MS, resulting in highly specific mass spectral fingerprints and these were identified as B. pumilusB. safenis and B. licheniformis. It was observed that all studied Bacillus spp. isolates only had the masses in common at 3864 ± 2, 7727 ± 2, and 14301 ± 4. The spectra of B. safensis and B. pumilus showed peaks at m/z 4914 ± 3, 6621 ± 3 and 14291 ± 2, which were absent in the spectrum of B. licheniformis. For B. safenis and B. pumilus, other potential biomarkers could be found at m/z 12620 and 16668, respectively.

PDF

References

1. Alispahic M. et al.: Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J. Med. Microbiol., 59, 295, 2010.

2. Ball S.C., Sepkowitz K.: Infection due to Bacillus cereus in an injection drug user with AIDS: bacteremia without morbidity. Clin. Infect. Dis., 19, 216, 1994.

3. Barrie D. et al.: Contamination of hospital linen by Bacillus cereus. Epidemiol. Infect., 113, 297, 1994.

4. Bernardo K. et al.: Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics, 2, 747, 2002.

5. Blue S.R., Singh V.R., Saubolle M.A.: Bacillus licheniformis bacteremia: five cases associated with indwelling central venous catheters. Clin. Infect. Dis., 20, 629, 1995.

6. Böhme K. et al.: Species differentiation of seafood spoilage and pathogenic Gram-negative bacteria by MALDI-TOF mass fingerprinting. J. Proteome Res., 9, 3169, 2010.

7. Bryce E.A. et al.: Dissemination of Bacillus cereus in an intensive care unit. Infect. Control Hosp. Epidemiol., 14, 459, 1993.

8. Clark A.E. et al.: Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev., 26, 547, 2013.

9. Connor N. et al.: Ecology of speciation in the genus Bacillus. Appl. Environ. Microbiol., 76, 1349, 2010.

10. Cotton D.J. et al.: Clinical features and therapeutic interventions in 17 cases of Bacillus bacteremia in an immunosuppressed patient population. J. Clin. Microbiol. 25, 672, 1987.

11. Curtis J.R, Wing A.J., Coleman J.C.: Bacillus cereus bacteraemia – a complication of intermittent haemodialysis. Lancet, 1, 136, 1967.

12. Dickinson D.N. et al.: MALDI-TOF MS compared with other polyphasic taxonomy approaches for the identification and classification of Bacillus pumilus spores. J. Microbiol. Methods, 58, 1, 2004.

13. Dupont C. et al.: Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin. Microbiol. Infect., 16, 998, 2010.

14. Farrar W.E.: Serious infections due to “non-pathogenic” organisms of the genus Bacillus. Am. J. Med., 34, 134, 1963.

15. Freiwald A., Sauer S.: Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc., 4, 732, 2009.

16. Hotta Y. et al.: Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons. J. Agric. Food Chem., 59, 5222, 2011.

17. Hsueh P.R. et al.: Nosocomial pseudo epidemic caused by Bacillus cereus traced to contaminated ethyl alcohol from a liquor factory. J. Clin. Microbiol., 37, 2280, 1999.

18. Ihde D.C., Armstrong D.: Clinical spectrum of infection due to Bacillus species. Am. J. Med., 55, 839, 1973.

19. Ivanova E.P., Mikhailov V.V., Andreev L.A.: Marine bacilli and some approaches to their identification. Mikrobiol. Zhurnal, 54, 27, 1922 (in Russian).

20. Knoester M. et al.: Routine identification of clinical isolates of anaerobic bacteria: matrix-assisted laser desorption ionization-time of flight mass spectrometry performs better than conventional identification methods. J. Clin. Microbiol., 50, 1504, 2012.

21. Krishnamurthy T., Ross P.L., Rajamani U.: Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 10, 883, 1996.

22. Lavigne J.P. et al.: Mass spectrometry: a revolution in clinical microbiology? Clin. Chem. Lab. Med., 36, 1, 2012.

23. Lund B.M.: Foodborne, disease due to Bacillus and Clostridium species. Lancet, 336, 982, 1990.

24. Lynn E.C. et al.: Identification of Enterobacteriaceae bacteria by direct matrix-assisted laser desorptiom/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass Spectrom., 13, 2022, 1999.

25. O’Day D.M. et al.: The problem of Bacillus infection with special emphasis on the virulence of Bacillus cereus. Ophthalmol., 88, 833, 1981.

26. Oggioni M.R. et al.: Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis. J. Clin. Microbiol., 36, 325, 1998.

27. Ozkocaman V. et al. Bacillus spp. among hospitalized patients with haematological malignancies: clinical features, epidemics and outcomes. J. Hosp. Infect., 64, 169, 2006.

28. Pribil P., Fenselau C.: Characterization of enterobacteria using MALDI-TOF mass spectrometry. Anal. Chem., 77, 6092, 2005.

29. Rajakaruna L. et al.: High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF MS of intact cells. Infect. Genet. Evol., 9, 507, 2009.

30. Satomi M., La Duc M.T., Venkateswaran K.: Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Syst. Evol. Microbiol., 56, 1735, 2006.

31. Sauer S. et al.: Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS ONE, 3, e2843, 2008. (doi: 10.1371/journal.pone. 0002843)

32. Sorokulova I.: Modern status and perspectives of Bacillus bacteria as probiotics. J. Prob. Health., 1, 1000e106, 2013. (doi: 10.4172/2329-8901.1000e106)

33. Tuazon C.U. et al.: Serious infections from Bacillus sp. JAMA, 241, 1137, 1979.

34. Van Veen S., Claas E., Kuijper E.J.: High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization–time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol., 48, 900, 2010.

35. Wolters M. et al.: MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int. J. Med. Microbiol., 301, 64, 2011.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2015 Authors

Downloads

Download data is not yet available.