Abstract
Due to high amount of collagen fibres in the structure of bone, the enzymes capable of collagen digestion play a key role in bone remodelling. Matrix metalloproteinases (MMPs), prevailing extracellular endopeptideses, can digest extracellularly located proteins, e.g. collagen, proteoglycans, elastin or fibronectin. Among MMPs, collagenases (MMP-1, MMP-8 and MMP-13) and gelatinases (MMP-2 and MMP-9) can cleave collagen particles to forms that are able to undergo further steps of catabolism intracellularly. In addition, activity of the gelatinases (as an activation of proinflammatory cytokines) facilitates spreading inflammation that is necessary during the first stage of bone healing. Further studies related to the role of various MMPs in mandibular fractures should precisely explain their function in the bone healing and evaluate the influence of MMPs inhibitors on that process. This review provides the basic information about two groups among MMPs family, collagenases and gelatinases, and their role in repairing processes after mandibular fractures.References
1. Armstrong DG., Jude EB.: The role of matrix metalloproteinases in wound healing. J Am Pediatr Med Assoc., 92, 12, 2002.
2. Bouletreau P.J., Steinbrech D., Spector J.A. et al: Gene expression of transforming growth factor-beta 3 and tissue inhibitor of metalloproteinase type 1 during membranous bone healing in rats. J Craniofac Surg., 11, 521, 2000.
3. Brew K., Dinakarpandian D., Nagase H.: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 1477, 267, 2000.
4. Cha H., Kopetzki E., Huber R. et al. Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol., 320, 1065, 2002.
5. Chubinskaya S., Huch K., Mikecz K. et al.: Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Lab Invest., 74, 232, 1996.
6. Cuzner M.L., Gveric D., Strand C. et al.: The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol., 55, 1194, 1996.
7. Danielsen P.L., Holst A.V., Maltesen H.R. et al.: Matrix metalloproteinase-8 overexpression prevents proper tissue repair. Surgery, 150, 897, 2011.
8. Dejonckheere E., Vandenbroucke R.E., Libert C.: Matrix metalloproteinase8 has a central role in inflammatory disorders and cancer progression. Cytokine Growth Factor Rev., 22, 73, 2011.
9. Docherty A.J., Lyons A., Smith B.J. et al.: Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature, 318, 66, 1985.
10. Duerr S., Stremme S., Soeder S., et al.: MMP-2/gelatinase A is a gene product of human adult articular chondrocytes and is increased in osteoarthritic cartilage. Clin Exp Rheumatol., 22, 603, 2004.
11. Fic P., Zakrocka I., Kurzepa J., Stepulak A.: Matrix metalloproteinases and atherosclerosis. Postepy Hig Med Dosw (Online), 65, 16, 2011.
12. Galazka G., Windsor L.J., Birkedal-Hansen H., Engler JA.: APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide. Biochemistry, 35, 11221, 1996.
13. Gross J., Lapiere C.M.: Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA., 48, 1014, 1962.
14. Guedez L., Stetler-Stevenson W.G., Wolff L. et al.: In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest., 102, 2002, 1998.
15. Hatibović-Kofman S., Raimundo L., Zheng L. et al.: Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate. Dent Traumatol., 24, 272, 2008.
16. Isnard N., Legeais J.M., Renard G., Robert L.: Effect of hyaluronan on MMP expression and activation. Cell Biol Int., 25, 735, 2001.
17. Kalfas I.H.: Principles of bone healing. Neurosurg Focus, 10, 7, 2001.
18. Kapila S., Xie Y., Wang W.: Induction of MMP-1 (collagenase-1) by relaxin in fibrocartilaginous cells requires both the AP-1 and PEA-3 promoter sites. Orthod Craniofac Res., 12, 178, 2009.
19. Knäuper V., Cowell S., Smith B. et al.: The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem., 272, 7608, 1997.
20. Krane S.M.: Is collagenase (matrix metalloproteinase-1) necessary for bone and other connective tissue remodeling? Clin Orthop Relat Res., 313, 47, 1995.
21. Kurzepa J., Bartosik-Psujek H., Suchozebrska-Jesionek D. et al.: Role of matrix metalloproteinases in the pathogenesis of multiple sclerosis. Neurol Neurochir Pol., 39, 63, 2005.
22. Lee J.Y., Taub P.J., Wang L. et al.: Identification of CITED2 as a negative regulator of fracture healing. Biochem Biophys Res Commun., 387, 641, 2009.
23. Leeman M.F., Curran S., Murray G.I.: The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol., 37, 149, 2002.
24. Lenglet S., Mach F., Montecucco F.: Role of matrix metalloproteinase-8 in atherosclerosis. Mediators Inflamm., 2013, 659282, 2013.
25. Li H., Ezra D.G., Burton M.J., Bailly M.: Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest Ophthalmol Vis Sci., 54, 4675, 2013.
26. Li N.G., Shi Z.H., Tang Y.P. et al.: New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. Curr Med Chem., 18, 977, 2011.
27. Loy M., Burggraf D., Martens K.H. et al.: A gelatin in situ-overlay technique localizes brain matrix metalloproteinase activity in experimental focal cerebral ischemia. J Neurosci Methods, 116, 125, 2002.
28. Madro A., Kurzepa J., Czechowska G. et al. Gelatinase activities and TIMP-2 serum level in alcohol cirrhosis and chronic pancreatitis. Curr Iss Pharm Med Sci., 26, 57, 2013.
29. Madsen D.H., Jürgensen H.J., Ingvarsen S. et al.: Differential Actions of the Endocytic Collagen Receptor uPARAP/Endo180 and the Collagenase MMP-2 in Bone Homeostasis. PLoS One, 8, e71261, 2013.
30. McCawley L.J., Matrisian L.M.: Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol., 13, 534, 2001.
31. Mott J.D., Werb Z.: Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol., 16, 558, 2004.
32. Murphy G., Knäuper V.: Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol., 15, 511, 1997.
33. Nagase H., Visse R., Murphy G.: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res., 69, 562, 2006.
34. Nomura S., Yoshimura K., Akiyama N. et al: HMG-CoA reductase inhibitors reduce matrix metalloproteinase-9 activity in human varicose veins. Eur Surg Res., 37, 370, 2005.
35. Opdenakker G., Van den Steen P.E., Van Damme J.: Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol., 22, 571, 2001.
36. Palosaari H., Wahlgren J., Larmas M. et al.: The expression of MMP-8 in human odontoblasts and dental pulp cells is down-regulatedby TGF-beta1. J Dent Res., 79, 77, 2000.
37. Pardo A., Selman M.: MMP-1: the elder of the family. Int J Biochem Cell Biol., 37, 283, 2005.
38. Peppin G.J., Weiss S.J.: Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc Natl Acad Sci USA., 83, 4322, 1986.
39. Polette M., Nawrocki-Raby B., Gilles C. et al. Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol., 49, 179, 2004.
40. Rowsell S., Hawtin P., Minshull C.A. et al.: Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol., 319, 173, 2002
41. Sang Q.X., Birkedal-Hansen H., Van Wart H.E.: Proteolytic and non-proteolytic activation of human neutrophil progelatinase B. Biochim Biophys Acta, 1251, 99, 1995.
42. Sato H., Takino T., Okada Y. et al. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature, 370, 61, 1994.
43. Schmidt R., Bültmann A., Ungerer M. et al.: Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation, 113, 834, 2006.
44. Seltzer J.L., Lee A.Y., Akers K.T. et al.: Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp Cell Res., 213, 365, 1994.
45. Serra P., Bruczko M., Zapico J.M. et al.: MMP-2 selectivity in hydroxamate-type inhibitors. Curr Med Chem., 19, 1036, 2012.
46. Smigielski J., Kołomecki K., Ziemniak P. et al.: Degradation of collagen by metalloproteinase 2 in patients with abdominal hernias. Eur Surg Res., 42, 118, 2009.
47. Stetler-Stevenson W.G., Bersch N., Golde D.W.: Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett., 296, 231, 1992.
48. Stickens D., Behonick D.J., Ortega N. et al.: Altered endochondral bone development in matrix metalloproteinase-13 deficient mice. Development, 131, 5883, 2004.
49. Uchida M., Shima M., Chikazu D. et al.: Transcriptional in- duction of matrix metalloproteinase-13 (collagenase-3) by 1α,25-dihydroxyvitamin D3 in mouse osteoblastic MC3T3-E1 cells. J Bone Min Res., 16, 221, 2001.
50. Van Lint P., Libert C.: Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev., 17, 217, 2006.
51. Vu T.H., Shipley J.M., Bergers G. et al.: MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 93, 411, 1998.
52. Wang X., Yu Y.Y., Lieu S. et al.: MMP9 regulates the cellular response to inflammation after skeletal injury. Bone, 52,111, 2013.
53. Weiss S., Zimmermann G., Pufe T. et al.: The systemic angiogenic response during bone healing. Arch Orthop Trauma Surg., 127, 989, 2009.
54. White L.A., Mitchell T.I., Brinckerhoff CE.: Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim Biophys Acta, 1490, 259, 2000.
55. Whitelock J.M., Murdoch A.D., Iozzo R.V., Underwood P.A.: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem., 271, 10079, 1996.
56. Wilhelm S.M., Collier I.E., Marmer B.L. et al.: SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem., 264, 17213, 1989.
57. Witty J.P., Foster S.A., Stricklin G.P. et al.: Parathyroid hormone-induced resorption in fetal rat limb bones is associated with production of the metalloproteinases collagenase and gelatinase B. J Bone Min Res., 11, 72, 1996.
58. Yu Y., Koike T., Kitajima S. et al.: Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions. Histol Histopathol., 23, 1503, 2008.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2014 Authors