SARS CoV-2 in tumor tissue in glioblastoma patients – preliminary study
PDF

Keywords

SARS-CoV-2
glioblastoma
SARS-CoV-2 antibody
COVID-19

Abstract

SARS-CoV-2 infection often causes neurological disorders. Experimental studies on an animal model have shown that SARS-CoV-2 is able to cross the blood-brain barrier. Researchers have also discovered that SARS-CoV-2 can infect glial cells. Gliomas are the most common type of brain tumor. Oncological patients are at high risk of infections, including SARS-CoV-2. Moreover, their weakened immunity causes the level of antibodies after infection or vaccination to be lower than in the healthy population. Therefore, the aim of our study was to evaluate the occurrence of SARS-CoV-2 RNA in tumor tissue collected during surgery. We also tested the level of anti-SARS-CoV-2 antibodies in these patients. The obtained results indicate the tropism of the virus to tumor tissue - glioblastoma. The level of anti-SARS antibodies was higher in patients with SARS-CoV-2 RNA detected in tumour tissue.

PDF

References

1. Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the “goldilocks”. Cell Mol Immunol. 2024;21(2):171-83.

2. Wang X, Lu L, Jiang S. SARS-CoV-2 evolution from the BA.2.86 to JN.1 variants: unexpected consequences. Trends in Immunology. 2024;45(2):81-4.

3. Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, et al. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol. 2024;22(4):206-25.

4. Lam ICH, Zhang R, Man KKC, Wong CKH, Chui CSL, Lai FTT, et al. Persistence in risk and effect of COVID-19 vaccination on long-term health consequences after SARS-CoV-2 infection. Nat Commun. 2024;15(1):1716.

5. Meinhardt J, Streit S, Dittmayer C, Manitius R, Radbruch H, Heppner FL. The neurobiology of SARS-CoV-2 infection. Nat Rev Neurosci. 2024;25(1):30-42.

6. Partiot E, Hirschler A, Colomb S, Lutz W, Claeys T, Delalande F, et al. Brain exposure to SARS-CoV-2 virions perturbs synaptic homeostasis. Nat Microbiol. 2024;9(5):1189-206.

7. Xu C, Hou P, Li X, Xiao M, Zhang Z, Li Z, et al. Comprehensive understanding of glioblastoma molecular phenotypes: classification, characteristics, and transition. Cancer Biol Med. 2024;21(5):363-81.

8. Richter V, Ernemann U, Bender B. Novel imaging approaches for glioma classification in the Era of the World Health Organization 2021 update: A scoping review. Cancers. 2024;16(10):1792.

9. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23(8):1231-51.

10. Dong J, Wang S, Xie H, Mou Y, Zhu H, Peng Y, et al. COVID-19 hospitalization increases the risk of developing glioblastoma: a bidirectional Mendelian-randomization study. Front Oncol. 2023;13:1185466.

11. Diajhete R, Cisse Y, Ba M, Sall A, Ba D, Coumé M. Glioblastoma and COVID-19 in an elderly patient about a case: Review of the literature. Int J Neurol Res. 2024;6(1):01-4.

12. Hu H, Wang C, Tao R, Liu B, Peng D, Chen Y, et al. Evidences of neurological injury caused by COVID-19 from glioma tissues and glioma organoids. CNS Neurosci Ther. 2024;30(6):e14822.

13. Mohile NA, Blakeley JO, Gatson NTN, Hottinger AF, Lassman AB, Ney DE, et al. Urgent considerations for the neuro-oncologic treatment of patients with gliomas during the COVID-19 pandemic. Neuro Oncol. 2020;22(7):912-7.

14. Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, et al. Mechanisms of resistance and current treatment options for Glioblastoma Multiforme (GBM). Cancers. 2023;15(7):2116.

15. Bikfalvi A, Costa CA da, Avril T, Barnier JV, Bauchet L, Brisson L, et al. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer. 2023;9(1):9-27.

16. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro-Oncology. 2019;21(Supplement_5):v1-100.

17. Gatson NTN, Barnholtz-Sloan J, Drappatz J, Henriksson R, Hottinger AF, Hinoul P, et al. Tumor treating fields for glioblastoma therapy during the COVID-19 pandemic. Front Oncol. 2021;11:679702.

18. Bhola S, Trisal J, Thakur V, Kaur P, Kulshrestha S, Bhatia SK, et al. Neurological toll of COVID-19. Neurol Sci. 2022;43(4):2171-86.

19. Belopasov VV, Yachou Y, Samoilova EM, Baklaushev VP. The nervous system damage in COVID-19. J Clin Pract. 2020;11(2):60-80.

20. Granholm AC. Long-term effects of SARS-CoV-2 in the brain: Clinical consequences and molecular mechanisms. J Clin Med. 2023;12(9):3190.

21. Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6(1):337.

22. Smirnova OA, Ivanova ON, Fedyakina IT, Yusubalieva GM, Baklaushev VP, Yanvarev DV, et al. SARS-CoV-2 establishes a productive infection in hepatoma and glioblastoma multiforme cell lines. Cancers. 2023;15(3):632.

23. Kyriakopoulos AM, Nigh G, McCullough PA, Seneff S. Mitogen Activated Protein Kinase (MAPK) activation, p53, and autophagy inhibition characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike protein induced neurotoxicity. Cureus. 14(12):e32361.

24. Gregory TA, Knight SR, Aaroe AE, Highsmith KN, Janatpour ZC, O’Brien BJ, et al. Accelerated tumor progression after COVID-19 infection in patients with glioblastoma: A retrospective case – control study. Neurooncol Pract. 2024;11(4):475-83.

25. Lei J, Liu Y, Xie T, Yao G, Wang G, Diao B, et al. Evidence for residual SARS-CoV-2 in glioblastoma tissue of a convalescent patient. Neuroreport. 2021;32(9):771-5.

26. Suarez-Meade P, Watanabe F, Ruiz-Garcia H, Rafferty SB, Moniz-Garcia D, Schiapparelli PV, et al. SARS-CoV2 entry factors are expressed in primary human glioblastoma and recapitulated in cerebral organoid models. J Neurooncol. 2023;161(1):67-76.

27. Keyhanian K, Umeton RP, Mohit B, Davoudi V, Hajighasemi F, Ghasemi M. SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation. J Neuroimmunol. 2021;350:577436.

28. Crunfli F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci. 2022;119(35):e2200960119.

29. Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610.

30. Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z, et al. Patients with cancer appear more vulnerable to SARS-CoV-2: A multicenter study during the COVID-19 outbreak. Cancer Discovery. 2020;10(6):783-91.

31. Li Z, Wei Y, Zhu G, Wang M, Zhang L. Cancers and COVID-19 risk: A mendelian randomization study. Cancers (Basel). 2022;14(9):2086.

32. Jiang Y, Wu Q, Song P, You C. The variation of SARS-CoV-2 and advanced research on current vaccines. Front Med (Lausanne). 2021;8:806641.

33. Kannan S, Shaik Syed Ali P, Sheeza A. Omicron (B.1.1.529) – variant of concern –molecular profile and epidemiology: a mini review. Eur Rev Med Pharmacol Sci. 2021;25(24):8019-22.

34. Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect. 2021;27(8):1109-17.

35. Greenberger LM, Saltzman LA, Senefeld JW, Johnson PW, DeGennaro LJ, Nichols GL. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell. 2021;39(8):1031-3.

36. Thakkar A, Pradhan K, Jindal S, Cui Z, Rockwell B, Shah AP, et al. Patterns of seroconversion for SARS-CoV2-IgG in patients with malignant disease and association with anticancer therapy. Nat Cancer. 2021;2(4):392-9.

37. Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021;595(7868):572-7.

38. Ehmsen S, Asmussen A, Jeppesen SS, Nilsson AC, Østerlev S, Vestergaard H, et al. Antibody and T cell immune responses following mRNA COVID-19 vaccination in patients with cancer. Cancer Cell. 2021;39(8):1034-6.

39. Bange EM, Han NA, Wileyto P, Kim JY, Gouma S, Robinson J, et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med. 2021;27(7):1280-9.

40. Mairhofer M, Kausche L, Kaltenbrunner S, Ghanem R, Stegemann M, Klein K, et al. Humoral and cellular immune responses in SARS-CoV-2 mRNA-vaccinated patients with cancer. Cancer Cell. 2021;39(9):1171-2.

41. Lo Sasso B, Giglio RV, Vidali M, Scazzone C, Bivona G, Gambino CM, et al. Evaluation of Anti-SARS-Cov-2 S-RBD IgG Antibodies after COVID-19 mRNA BNT162b2 Vaccine. Diagnostics. 2021; 11(7):1135.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2024 Authors

Downloads

Download data is not yet available.