Dual amylase/glucosidase inhibition, antilipolytic and antiproliferative potential of the aerial parts of <i>Pistacia atlantica</i>, <i>Pistacia lentiscus</i> and <i>Pistacia terebinthus</i> on a obesity related-colorectal cancer cell line panel
PDF

Keywords

orlistat
acarbose
Pancreatic lipase
α-amylase
α-glucosidase

Abstract

Pistacia species (P. spp) have been used as a treatment for various diseases, including diabetes and inflammation. This study aimed to identify the main components of flavonoids in Pistacia species and evaluate the effect of aqueous extracts of P. spp on pancreatic enzymes and on cancer cells associated with obesity in colon and rectum. HPLC was used to identify the major components of flavonoids. The potent inhibitory effect of Pistacia species against pancreatic α-amylase, α-glucosidase and lipase was examined. The antiproliferative efficacy of the plant extract against several colorectal cancer cell lines were then measuredThe main flavonoids component found in Pistacia species are quercetin-3-β-D-glucoside, rutin, kaempferol and vitexin. The starch blockade IC50 (µg/mL) of Pistacia species in a descending order were: P. lentiscus leaves: 1.09±0.01; P. atlantica leaves: 0.96±0.09 and P. atlantica fruits: 0.48±0.02. Pistacia species exerted promising inhibition effect for pancreatic lipase (PL). Besides the aglycones of P. atlantica leaves, all the tested aqueous extracts exerted appreciably novel antiproliferative activity against the tested colorectal cancer cell lines. This study provides useful indication for the Pistacia species as a potential novel therapeutic agent against diabesity and cancer.

PDF

References

1. Alqaraleh M, Kasabri V. The antiglycation effect of monomethyl branched chained fatty acid and phytochemical compounds and their synergistic effect on obesity related colorectal cancer cell panel. RJDNMD. 2019;26(4):361-9.

2. Alqaraleh M, Kasabri V, Al-Othman N. Evaluation of pancreatic and extra pancreatic effects of branched amino acids. RJDNMD. 2019;26(2):199-209.

3. Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. Sc. World J. 2013;1(2013):219815.

4. Mozaffarian V. Trees and shrubs of Iran. Teheran: Farhang Moaser Publ; 2005.

5. Kole C. Wild crop relatives: genomic and breeding resources: legume crops and forages. Springer; 2014.

6. Mozaffarian V. A dictionary of Iranian plant manes. 2nd. Teheran: Farhang Moaser Publication; 1998.

7. Buriani A, Fortinguerra S, Sorrenti V, Dall’Acqua S, Innocenti G, Montopoli M, et al. Human adenocarcinoma cell line sensitivity to essential oil phytocomplexes from Pistacia species: a multivariate approach. Molecules. 2017;22(8):1336.

8. Shahid S, Taj S. Antidiabetic activity of extracts of Pistachia khinjuk on alloxan monohydrate induced diabetic mice. In: MATEC web of conferences; 2019:01006.

9. Karasawa MMG, Mohan C. Fruits as prospective reserves of bioactive compounds: a review. Nat Prod Bioprospect. 2018;8(5):335-46.

10. Foddai M, Kasabri V, Afifi FU, Azara E, Petretto GL, Pintore G. In vitro inhibitory effects of Sardinian Pistacia lentiscus L. and Pistacia terebinthus L. on metabolic enzymes: Pancreatic lipase, α‐amylase, and α‐glucosidase. Starch‐Stärke. 2015;67(1-2):204-12.

11. Atmani D, Chaher N, Berboucha M, Ayouni K, Lounis H, Boudaoud H, et al. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009;112 (2):303-9.

12. Ramezani M, Khaje-Karamoddin M, Karimi-Fard V. Chemical composition and anti–Helicobacter pylori activity of the essential oil of Pistacia vera. Pharm Biol. 2004;42(7):488-90.

13. Mecherara-Idjeri S, Hassani A, Castola V, Casanova J. Composition of leaf, fruit and gall essential oils of Algerian Pistacia atlantica Desf. J Essent Oil Res. 2008;20(3):215-9.

14. Mecherara-Idjeri S, Hassani A, Castola V, Casanova J. Composition and chemical variability of the essential oil from Pistacia lentiscus L. growing wild in Algeria: part II: fruit oil. J Essent Oil Res. 2008;20(2): 104-7.

15. Tzakou O, Bazos I, Yannitsaros A. Volatile metabolites of Pistacia atlantica Desf. from Greece. Flavour Fragr J. 2007;22(5):358-62.

16. Kawashty S, Mosharrafa S, El-Gibali M, Saleh N. The flavonoids of four Pistacia species in Egypt. Biochem Syst Ecol. 2000;28(9):915-7.

17. Kamal F, Shahzad M, Ahmad T, Ahmed Z, Tareen RB, Naz R, et al. Antihyperlipidemic effect of Pistacia khinjuk. Biomed Pharmacother. 2017;96:695-9.

18. Sun F, Zheng XY, Ye J, Wu TT, Wang Jl, Chen W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer. 2012;64(4):599-606.

19. Kasabri V, Al-Hallaq EK, Bustanji YK, Abdul-Razzak KK, Abaza IF, Afifi FU. Antiobesity and antihyperglycaemic effects of Adiantum capillus-veneris extracts: in vitro and in vivo evaluations. Pharm Biol. 2017;55(1):164-72.

20. Lebreton P, Jay M, Voirin B, Bouchez M. Sur l’analyse qualitative et quantitative des flavonoïdes. Chim Anal Fr. 1967;49(7):375-83.

21. Harborne J. Phytochemical methods chapman and Hall. Ltd London;1973:4,49-188.

22. Hamlat N, Hassani A, Ouafi S. Analyse des polyphénols extraits des feuilles du Pistacia lentiscus Etude de l’activité antibactérienne. Revue des régions arides. 2008;(21):306-16.

23. Cabrera K, Lubda D, Eggenweiler HM, Minakuchi H, Nakanishi K. A new monolithic‐type HPLC column for fast separations. J High Resol Chromatogr. 2000;23(1):93-9.

24. Rostagno MA, Palma M, Barroso CG. Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A. 2003;1012(2):119-28.

25. Wu Q, Wang M, Simon JE. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J Chromatogr A. 2003;1016(2):195-209.

26. Zu Y, Li C, Fu Y, Zhao C. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. JPBA Open. 2006;41(3):714-9.

27. Gürbüz I, Üstün O, Yesilada E, Sezik E, Kutsal O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. J Ethnopharmacol. 2003;88(1):93-7.

28. Kasabri V, Afifi FU, Abu-Dahab R, Mhaidat N, Bustanji YK, Abaza I, et al. In vitro modulation of metabolic syndrome enzymes and proliferation of obesity related-colorectal cancer cell line panel by Salvia species from Jordan. Rev Roum Chim. 2014;59:693-705.

29. Hamdan I, Afifi F. Studies on the in vitro and in vivo hypoglycemic activities of some medicinal plants used in treatment of diabetes in Jordanian traditional medicine. J Ethnopharmacol. 2004;93(1):117-21.

30. Arabiyat S, Al-Hiari Y, Bustanji Y, Zalloum H, Kasabri V. In Vitro modulation of pancreatic lipase and proliferation of obesity related colorectal cancer cell line panel by novel synthetic triazoloquinolones. Rev Roum Chim. 2016;61(11-12):871-9.

31. Tarawneh M, Al-Jaafreh AM, Al-Dal’in H, Qaralleh H, Alqaraleh M, Khataibeh M. Roasted date and barley beans as an alternative’s coffee drink: micronutrient and caffeine composition, antibacterial and antioxidant activities. Sys Rev Pharm. 2021;12 (1):1079-83.

32. Yousef I, Oran S, Alqaraleh M, Bustanji M. Evaluation of cytotoxic, antioxidant and antibacterial activities of Origanum dayi, Salvia palaestina and Bongardia chrysogonum plants growing wild in Jordan. TJNPR. 2021;5(1):66-70.

33. Alqaraleh M, Kasabri V, Mashallah S. Evaluation of anticancer and anti-inflammatory properties of branched chain amino acids. J Biochem Cell Biol. 2018;1(2):108.

34. Abu-Dahab R, Afifi F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Sci Pharm. 2007;75(3):121-46.

35. Parr AJ, Bolwell GP. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. JSFAAE. 2000;80(7):985-1012.

36. Sellappan S, Akoh CC. Flavonoids and antioxidant capacity of Georgia-grown Vidalia onions. J Agric Food Chem. 2002;50(19): 5338-42.

37. Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000;55(6):481-504.

38. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572-84.

39. Aron PM, Kennedy JA. Flavan‐3‐ols: Nature, occurrence and biological activity. MNF. 2008;52(1):79-104.

40. Liu S, Li D, Huang B, Chen Y, Lu X, Wang Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J Ethnopharmacol. 2013;149(1):263-9.

41. Etxeberria U, de la Garza AL, Campión J, Martinez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert opinion on therapeutic targets. Expert Opin Ther Targets. 2012;16(3):269-97.

42. Meng Y, Su A, Yuan S, Zhao H, Tan S, Hu C, et al. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. as inhibitors of α-amylase and α-glucosidase. Plant Foods Hum Nutr. 2016;71(4):444-9.

43. Ng K, Gu C, Zhang H, Putri CY. Evaluation of α-amylase and α-glucosidase inhibitory activity of flavonoids. Int J Food Sci Nutr. 2015;2(2):174-9.

44. Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol. 2006;52(2):149-53.

45. Li K, Yao F, Xue Q, Fan H, Yang L, Li X, et al. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure – activity relationship of its eight flavonoids by a refined assign-score method. Chem Cent J. 2018;12(1):82.

46. Buchholz T, Melzig MF. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 2015;81(10):771-83.

47. Marrelli M, Conforti F, Araniti F, Statti GA. Effects of saponins on lipid metabolism: A review of potential health benefits in the treatment of obesity. Molecules. 2016;21(10):1404.

48. Sun N-N, Wu T-Y, Chau C-F. Natural dietary and herbal products in anti-obesity treatment. Molecules. 2016;21(10):1351.

49. Chung YW, Han DS, Park YK, Son BK, Paik CH, Lee HL, et al. Association of obesity, serum glucose and lipids with the risk of advanced colorectal adenoma and cancer: a case-control study in Korea. Dig Liver Dis. 2006;38 (9):668-72.

50. Stattin P, Lukanova A, Biessy C, Söderberg S, Palmqvist R, et al. Obesity and colon cancer: does leptin provide a link? Int J Cancer Res. 2004;109 (1):149-52.

51. Renehan AG, Roberts DL, Dive C. Obesity and cancer: patho-physiological and biological mechanisms. Arch Phys Biochem. 2008;114(1):71-83.

52. Li Y, Sarkar FH. Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr. 2002;132(12):3623-31.

53. Gupta S, Hussain T, Mukhtar H. Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys. 2003; 410(1):177-85.

54. Bode AM, Dong Z. Cancer prevention research − then and now. Nat Rev Cancer. 2009;9(7):508.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Copyright (c) 2016 Authors

Downloads

Download data is not yet available.