The predictive validity of the Morse Fall Scale in hospitalized patients in the Czech Republic
The predictive validity of the Morse Fall Scale in hospitalized patients in the Czech Republic.pdf

Keywords

accidental falls
hospitalized patients
Morse Fall Scale
predictive validity

Abstract

THE PREDICTIVE VALIDITY OF THE MORSE FALL SCALE IN HOSPITALIZED PATIENTS IN THE CZECH REPUBLIC

Aim. The main aim of the study was to test the Morse Fall Scale (MFS) in the Czech population of hospitalized patients and to determine the predictive validity of the scale by assessing its specifi city, sensitivity, positive predictive value, negative predictive value and cut-off points.

Material and methods. The study was a prospective follow-up study. Ten acute and long-term care units in two selected hospitals participated in the study. The sample consisted of 4383 patients. To assess the patients’ risk of falls, the MFS was chosen. The patients were assessed on admission.

Results. The reliability of the Morse Fall Scale measured by Cronbach’s alpha was 0.484. Using a cut-off point of 35, the sensitivity was 61.1% and the specifi city was 53%. The positive predictive value was 10.5% and the negative predictive value was 90.6%. 

Conclusions. Results of the study revealed only moderate predictive accuracy of the Morse Fall Scale.

The predictive validity of the Morse Fall Scale in hospitalized patients in the Czech Republic.pdf

References

1. WHO. Falls. https://www.who.int/en/news-room/fact-sheets/detail/falls

2. Oliver D, Papaioannou A, Giangregorio L, et al. A systematic review and meta-analysis of studies using the STRATIFY tool for prediction of falls in hospital patients: how well does it work?. Age Ageing. 2008; 37(6): 621-627. doi:10.1093/ageing/afn203.

3. Morse JM. Preventing Patient Falls. 2008. 2nd ed. New York: Springer Publishing Company.

4. LeLaurin JH, Shorr RI. Preventing Falls in Hospitalized Patients: State of the Science. Clin. Geriatr. Med. 2019; 35(2): 273-283. doi:10.1016/j.cger.2019.01.007.

5. Cameron ID, Murray GR, Gillespie LD, et al. Interventions for preventing falls in older people in nursing care facilities and hospitals. Cochrane Database Syst. Rev. 2010; (1): CD005465. doi:10.1002/14651858.CD005465.pub2.

6. Cameron ID, Gillespie LD, Robertson MC, et al. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev. 2012; 12: CD005465. Published 2012 Dec 12. doi:10.1002/14651858.CD005465.pub3.

7. Cameron ID, Dyer SM, Panagoda CE, et al. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev. 2018; 9(9): CD005465. Published 2018 Sep 7. doi:10.1002/14651858.CD005465.pub4.

8. Oliver D, Connelly JB, Victor CR, et al. Strategies to prevent falls and fractures in hospitals and care homes and effect of cognitive impairment: systematic review and meta-analyses. BMJ. 2007; 334(7584): 82. doi:10.1136/bmj.39049.706493.55.

9. Vandervelde S, Vlaeyen E, de Casterlé BD, et al. Strategies to implement multifactorial falls prevention interventions in community-dwelling older persons: a systematic review. Implement Sci. 2023;18(1):4. doi:10.1186/s13012-022-01257-w

10. Scott V, Votova K, Scanlan A, et al. Multifactorial and functional mobility assessment tools for fall risk among older adults in community, home-support, long-term and acute care settings. Age Ageing. 2007; 36(2): 130-139. doi:10.1093/ageing/afl165.

11. Kehinde JO. Instruments for measuring fall risk in older adults living in long-term care facilities: an integrative review. J. Gerontol. Nurs. 2009; 35(10): 46-55. doi:10.3928/00989134-20090902-01.

12. Harrington L, Luquire R, Vish N, et al. Meta-analysis of fall-risk tools in hospitalized adults. J. Nurs. Adm. 2010; 40(11): 483-488. doi:10.1097/NNA.0b013e3181f88fbd.

13. Aranda-Gallardo M, Morales-Asencio JM, Canca-Sanchez JC, et al. Instruments for assessing the risk of falls in acute hospitalized patients: a systematic review and meta-analysis. BMC Health Serv. Res. 2013; 13: 122. doi:10.1186/1472-6963-13-122.

14. Haines TP, Hill K, Walsh W, et al. Design-related bias in hospital fall risk screening tool predictive accuracy evaluations: systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2007; 62(6): 664-672. doi:10.1093/gerona/62.6.664.

15. Matarese M, Ivziku D, Bartolozzi F, et al. Systematic review of fall risk screening tools for older patients in acute hospitals. J. Adv. Nurs. 2015; 71(6): 1198-1209. doi:10.1111/ jan.12542.

16. Lin CC, Meardon S, O’Brien K. The Predictive Validity and Clinical Application of Stopping Elderly Accidents, Deaths & Injuries (STEADI) for Fall Risk Screening. Adv. Geriatr. Med. Res. 2022; 4(3): e220008. doi:10.20900/agmr20220008.

17. Park SH. Tools for assessing fall risk in the elderly: a systematic review and meta-analysis. Aging Clin. Exp. Res. 2018; 30(1): 1-16. doi:10.1007/s40520-017-0749-0.

18. Morse J, Morse R, Tylko S. Development of a scale to identify the fall-prone patients. Canadian J. Aging. 1989; 8: 366-377.

19. Morse JM. The modified Morse Fall Scale. Int. J. Nurs. Pract. 2006; 12(3): 174-175. doi:10.1111/j.1440-172X.2006.00573.x.

20. Chow SK, Lai CK, Wong TK, et al. Evaluation of the Morse Fall Scale: applicability in Chinese hospital populations. Int. J. Nurs. Stud. 2007; 44(4): 556-565. doi:10.1016/j. ijnurstu.2005.12.003.

21. Bóriková I, Tomagová M, Miertová M. Predikčná validita slovenskej verzie Morseovej stupnice rizika pádu v univerzitnej nemocnici. [Predictive value of the slovak version of the Morse Fall Scale at a university hospital]. Zdrav listy. 2021; 9(1): 37-44.

22. Watson BJ, Salmoni AW, .Zecevic AA. The use of the Morse Fall Scale in an acute care hospital. Clin. Nurs. Stud. 2016; 4: 3240.

23. Morse JM, Black C, Oberle K, et al. A prospective study to identify the fall-prone patient. Soc. Sci. Med. 1989; 28(1): 81-86. doi:10.1016/0277-9536(89)90309-2.

24. Chapman J, Bachand D, Hyrkäs K. Testing the sensitivity, specificity and feasibility of four falls risk assessment tools in a clinical setting. J. Nurs. Manag. 2011; 19(1): 133-142. doi:10.1111/j.1365-2834.2010.01218.x.

25. Tavakol M, Dennick R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011; 2: 53-55. doi:10.5116/ijme.4dfb.8dfd.

26. Baek S, Piao J, Jin Y, et al. Validity of the Morse Fall Scale implemented in an electronic medical record system. J. Clin. Nurs. 2014; 23(17-18): 2434-2440. doi:10.1111/jocn.12359.

27. Bóriková I, Tomagová M, Miertová M, et al. Predictive value of the Morse Fall Scale. Cent. Eur. J. Nurs. Midwifery. 2017; 8(1): 588-595. doi:10.15452/CEJNM.2017.08.0006.

28. McCollam ME. Evaluation and implementation of a research-based falls assessment innovation. Nurs. Clin. North Am. 1995; 30(3): 507-514.

29. O’Connell B, Myers H. A failed fall prevention study in an acute care setting: lessons from the swamp. Int. J. Nurs. Pract. 2001; 7(2): 126-130. doi:10.1046/j.1440¬172x.2001.00300.x.

30. Eagle DJ, Salama S, Whitman D, et al. Comparison of three instruments in predicting accidental falls in selected inpatients in a general teaching hospital. J. Gerontol. Nurs. 1999; 25(7): 40-45. doi:10.3928/0098-9134-19990701-14.

31. Ji S, Jung HW, Kim J, et al. Comparative Study of the Accuracy of At-Point Clinical Frailty Scale and Morse Fall Scale in Identifying High-Risk Fall Patients among Hospitalized Adults. Ann. Geriatr. Med. Res. 2023; 27(2): 99-105. doi:10.4235/ agmr.23.0057.

32. Kim YJ, Choi KO, Cho SH, et al. Validity of the Morse Fall Scale and the Johns Hopkins Fall Risk Assessment Tool for fall risk assessment in an acute care setting. J. Clin. Nurs. 2022; 31(23-24): 3584-3594. doi:10.1111/jocn.16185.

33. Rajagopalan R, Litvan I, Jung TP. Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions. Sensors (Basel, Switzerland). 2017; 17(11): 2509. doi:10.3390/s17112509.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Authors