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Abstract

Introduction. There are a few statistical approaches to estimate health impacts of the ambient air pollution concentrations. 
Air health effects are often studied in short-term exposure. In this context two main techniques are used; time-series and case-
crossover (CC). This work focuses on the CC methodology. In the standard method risk is estimated using log-linear models. 

Aim. This work proposes other types of the models.
Material and methods. The CC design is applied with various transformations of air pollution concentration. The mortality 

data are used for the period from 1987 to 2015 for Toronto, Canada. Daily concentration level of ambient ozone is considered  
as an exposure. The ozone concentration is transformed and used in the statistical models. The transformation is a product of two 
parts; a simple function such as logarithm and a logistic function as a weight. The transformed concentration is used in the CC sta-
tistical models. The models estimate the coefficient related to transformed concentration. It allows to construct the concentration-
response function. The generated models are assessed using the Akaike information criterion (AIC).

Results. The relative risks (RR), reported at 75th percentile of the concentration (55 ppb) are different. The standard CC model 
gives RR=1.0195 with the 95% confidence interval (1.0035, 1.0358), whereas the model with the transformation gives better fit 
and estimates RR=1.0054 (1.0026, 1.0082).

Conclusions. The proposed methodology allows to construct an accurate approximation of the concentration-response func-
tions. These functions provide adequate approximations and also identify a potential threshold.
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mortality study in relation to fine particulate matter [6]. In this 
study daily counts of deaths in Toronto are analysed using con-
ditional Poisson regression.

MATERIAL AND METHODS

Data
In this work, health data considered were all non-accidental 

mortality for Toronto, Canada. These data are part of the data 
used in the recently published results of a multi-city multi-
country study [7]. We analyzed daily counts of mortality for 
the period from January 01, 1987 to December 31, 2015.  
In total we considered 797,650 death cases during 10,592 days 
with daily average 75.3 cases and with standard deviation 
(SD), SD=12.1 cases.

For air pollution exposure, we used the concentration of am-
bient ozone. The concentration was represented as daily maxi-
mum 8-hr mean. The same day and one day before death (lag01) 
concentrations were averaged used to represent the exposure in 
the constructed statistical models. The considered concentration 
has an average equal to 46.4 and SD=18.1 in ppb.

Two weather factors, temperature and humidity, were in-
corporated into the realized statistical models. Temperature 

INTRODuCTION

An important research aspect in environment epidemiology 
is to asses the reliable association between ambient air pollu-
tion and human health. There are many approaches to obtain 
the quantitative estimation of the risks related to fluctuations in 
air pollution concentrations. Very often the goal of such stud-
ies is to determine the concentration-response function (CRF). 
The function allows the representation of the risks along the 
concentration levels. In particular, the function can determine 
a threshold and allow the identification of the concentration 
levels with higher impact on human health [1]. The shape of 
the concentration-response relationship is critical for estimat-
ing public health impacts [2,3].

Here, we focus on short-term exposure associations and 
mainly our goal is to present some methodological approach-
es. There are some publications related to the CRF and to am-
bient air pollution and short-term effects of the exposure on 
health and mortality but information in the literature about the 
shape of the CRF is limited [4,5].

The methodology proposed here is the technique to con-
struct the CRF in the form of the parametric algebraic func-
tions. A similar algorithm to estimate an optimal CRF was 
proposed for long-term exposure in the Canadian longitudinal 
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and relative humidity were represented in the form of natural 
splines with three degrees of freedom. In this work, we mainly 
focused on the presented methodology rather than on a specific 
analysis of the exposure and their lags impact on health ef-
fects. Just to simplify the paper we used one exposure (lag01; 
an average of two days) and one design of the model.

Statistical models
Here we used a case-crossover (CC) technique as the base 

of our statistical approach and modelling [8]. An important as-
pect of the CC methodology is to determine the control peri-
ods for the case period. Among various methods to assign the 
controls is the time-stratified method [9]. The time-stratified 
case-crossover design is widely used in environmental epi-
demiology to analyze the short-term effects of air pollution. 
In the time-stratified technique the control periods are in the 
same days of week as the analyzed case. The time-window 
is restricted to one and common month for the case and con-
trol periods. In this paper we worked with daily counts. We 
constructed hierarchical clusters with the following structure 
using the calendar components: years, months, and day of 
week. The model is realized as a conditional Poisson regres-
sion with respect to the structural clusters of the form <year: 
month: day of week>, [10-13]. This construction results in 4 
or 5 days in one cluster. The time effect is controlled by the 
applied structure. The calculations were conducted in the R 
statistical software (ver. 4.0; R Core Team 2020, [14]). The 
calculations were performed using the procedure gnm (gen-
eralized non-linear models). After identification of an optimal 
transformation the statistical model is re-calculated with the 
option “quasipoisson” [15,16].

Here we are using Z to represent the concentration of air 
pollutant. Thus in this work it is simple Z=ozone (O3). We real-
ize the transformation T of air pollution concentration before 
using it in the statistical models. The applied transformation is 
given by the following formula

T(Z)=f(Z)*L(Z),

Where the function f has a simple form such as f(Z)=Z,log(Z), 
or other simple functions of the concentration. Here we also 
analyzed the functions with an additional parameter A, such as 
f(Z)=Z^A,log(1+Z/A). The function L(Z) is the logistic func-
tion and it is given by the following expression

L(Z)=1/(1+e^((μ-Z)/(τ*r))).

The logistic function is applied here as a weight and allows 
us to construct the transformation T. The parameters control 
the shape of the weighting function. Here r is the concentration 
range of Z, μ (mu) is a location parameter, and the parameter τ 
(tau) controls the curvature of the weighting function. Larger 
values of the parameter give shapes with less curvature. For 
very small values of tau (such as τ<0.001) L(Z) approximates 
an indicator function at μ. The function L(Z) is almost linear 
for τ>0.5. It implies that a wide spectrum of the various shapes 
can be obtained and modelled [6,15].

The concentration-response function (CRF) is given by the 
relation

CRF(Z)=e^(β*T(Z)),

where the coefficient β is determined by the statistical model. 
Here this model is the CC model.

To obtain the form of the function CRF we need to have the 
value of the coefficient β and values of the parameters (here 
they are mu, tau, and A) used to construct the transformation 
T(Z). 

The coefficient related to air pollutant, here β, is estimated 
by a realized statistical model. In this presentation we applied 
the case-crossover technique. In the standard approach we 
simply do not perform any transformation or we can interpret 
this situation as T(Z)=Z. In this situation we simply have the 
following relation CRF(Z)=e^(β*Z).

To apply a non-trivial transformation T(Z), we need to have 
the parameters of the weighting logistic function, mu and tau, 
and for some functions also A. Two approaches are proposed, 
and it depends on how many the parameters should be deter-
mined.

Approach I
This method can be easily applied when only two param-

eters, mu and tau, have to be determined. This approach is 
based on tabulation of the transformation function for various 
values of these parameters. It was observed that practically we 
can consider two values of the parameter tau; τ=0.1 and τ=0.2. 
Thus in practice only these two values of tau are tested. As the 
candidates we consider values for the parameter μ selected as 
percentiles of the distribution of Z. Simply, we use the pro-
posed pair (μ,τ) and we build the function T(Z). This func-
tion was incorporated into the model. The statistical model 
was constructed with T(Z) values as an exposure. The Akaike 
information criterion (AIC) was collected for each tested pair 
of the parameters. The proposed pair (μ,τ) was evaluated. The 
quality of the approximation was measured by the AIC value. 
The pair which gives the lowest AIC was applied to realize the 
final transformation and statistical models.

Approach II
We can determine the parameters of the transformation T in 

an iterative process. The process can be described as follows. 
We define a function G which constructs statistical model and 
returns the coefficient β and the AIC value. The function G is 
used as a goal function in the minimization problem. The func-
tion nlminb in R is used here for this purpose [17]. The process 
starts with an initial (guess) value of the parameters describing 
the transformation. We have to use this approach in the case 
where the transformation has also the parameter A.

RESuLTS

Table 1. summarizes the values of the coefficients of the 
analyzed models. The first line of the results corresponds to 
the standard CC method. This method gives the AIC value 
as 78707.7. The lowest AIC value is obtained as 78699.3 for 
three methods with transformation. The relative risk (RR) 
and the 95% confidence interval (95%CI) are calculated for 
all presented approaches at 75th percentile of Z (=55 ppb). 
These values were calculated after the corresponding mod-
els were identified as optimal ones using the AIC value as  
a criterion. The final results (RR, 95%CI) were calculated 
with determined transformation and the option “quasipoisson”  
in the gnm procedure.
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Figure 2. illustrates the histogram of the considered concentra-
tions. It also shows the concentration-response shapes for the CC 
method and two methods with the transformations, where the pa-
rameter A is present. We may assume that the transformation with 
f(Z)=log(1+Z/A) is preferable, as it is universal and easy to implement.

We should highlight that the standard case-crossover meth-
od gives the following estimations: RR=1.0195 (95% CI: 
1.0035, 1.0358) and the method with f(Z)=log(1+Z/A) gives 
the corresponding values as RR=1.0054, (95% CI: 1.0026, 
1.0082). Both the results are reported for Z=55 ppb.

DISCuSSION

According to the assumed criterion to evaluate the con-
structed models, in our case it is the AIC value criterion, the 
models with the transformations generate more accurate ap-
proximations. The estimated relative risk is smaller than in the 
case of the standard case-crossover approach. In the CC mod-
els the log-linear association is assumed and assessed.

As we see in Fig. 2, the histogram shows that the most fre-
quent concentrations of ambient ozone are less than 75 ppb. 
The standard CC method indicates RR up to 1.025 in this 
range of the concentration. The models with the transforma-
tion suggest the lower risk than the CC method generates. The 
models with transformation even indicate almost no effect be-
low 75 ppb concentration level. For the higher levels of the 
concentrations, for example, 150 ppb, the situation is opposite. 
The standard CC method estimates RR=1.05. The model with 
the transformative gives RR=1.15. These values are estimated 
from the CRF graphs.

We really do not know where the true value lies. The ob-
tained estimations are the results of the statistical methods. We 
may try to remove some high values of the concentration to 
observe the behaviour of the proposed models. All techniques 
and statistical methods considered here estimated the asso-
ciations as positive and statistically significant. The obtained 
CRF shapes induce a threshold. Here we have changes only in 
the form of the f(Z) function and as a consequence the shapes 
are similar. The proposed method generates various forms of 
the CRF shapes which are flexible to the considered health 
outcomes. As an example of the possible various shapes see 
in [6] Fig. 1. 
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