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Abstract

Introduction. Estimating the impact of short-term exposure on health outcomes needs knowledge of both the profile and 
magnitude of the relative risks. This motivates constructions of practical and reliable concentration-response functions (C-RFs).

Aim. To define a practical method of finding concentration-response parametric function whose adjustable parameters can be 
tuned by data-driven well established routines.

Material and methods. Mortality data for the period from 1987 to 2015 (10,592 consecutive days) in Montreal, Canada, 
are used for illustrative purposes. Exposure to ambient ozone measured by its concentration levels is considered health risk. 
Concentration-response function is built using statistical modelling, conditional Poisson regression, natural spline technique, and 
a rudimentary hierarchical data clustering. The case-crossover design is applied to fit the model of C-RF to the mortality data 
consisting of daily counts of non-accidental deaths.

Results. Log-linear models of the concentration-response functions were computed for the concentrations and cofactors data 
lagged by 0 to 7 days; the results were statistically significant within this range of lags. The effectiveness of fitting was confirmed 
by reliable statistical tests. Digital routines were created to perform all computational tasks; software codes (written for R soft-
ware platform) are included. The C-RF specifying the current responses to the cumulative exposure in several previous days can 
be obtained from the responses to lagged exposures.

Conclusions. The proposed method of concentration-response function estimation appears practical and effective in producing 
reliable results. The constructed function is a parametric and monotonic non-decreasing.

Keywords: Ambient air pollution; concentration-response function; log-linear modelling.

not enough care is given to the non-linear dynamics of health 
effect versus air pollution. 

In this context, it is important to find the generic shape of 
the functions associating the lagged factors to responses and 
to make the functions sufficiently flexible by means of param-
eterization. In this paper, as well as in the general practice, the 
generic shape is determined by the logarithmic dependence of 
health relative risks on the levels of air pollution. The extreme 
level occurrences are too rare to allow for consistent meas-
urements and analysis. So in such a situation the logarithmic 
risks are weighted by logistic function becoming scaled and 
consequently are small, far away from average levels. In the 
scenario where concentrations are in the range close to the av-
erage, parameters are tuned to warrant a good fit to the reality 
described by data.

IntRoduCtIon

The dependency of health risks on short-term acute changes 
in the concentration of ambient air pollutants continues to be a 
subject of intensive research [1,2]. In the majority of such stud-
ies, the dependency is represented by concentration-response 
functions (C-RFs), understanding the response as the relative 
health risk. The C-RFs are useful in forming the data-driven 
public health policies. It is practical to have parametric C-RFs 
with data-adjustable shapes rather than responses to tabulated 
data of health risk factors [3-6]. 

The models of C-RFs suffer from the following often-ob-
served phenomenon: they produce a risk which may decrease 
with an increase in the pollution level. It is primarily a con-
sequence of lags in the cause-to-effect processes, particularly 
for health effects when only a relatively small number of days 
have high levels of air pollution. In these not frequent days, 
an increase in health problems could not be observed yet, if 
ever. In reality, the health conditions are mainly driven by 
acute changes in the pollution levels in the range close to the 
average levels. The problem can also reside in design, when 
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MAtERIAL And MEtHodS

data
The dataset consists of daily counts of all non-accidental 

deaths in Montreal, Canada, in the period from January 1987 to 
December 2015. In this period of 10,592 days, 441,272 deaths 
were recorded. This work does not conduct epidemiological 
analysis of the data. These data already have been extensively 
used in another analysis related to ozone and mortality [7]. 
Here, they are exploited for illustration of the proposed meth-
odology of modeling the dose-response function. In the model, 
ground-level ozone (O3) appears as ambient air pollutant; its 
concentrations were measured by the National Air Pollution 
Surveillance Program (NAPS, [8]) and reported as records of 
8-hour daily maximum concentrations. Daily average of ambi-
ent temperature and of relative humidity fi gure in the model as 
weather factors.

Statistical Model
This study design is based on time-stratifi ed case-crossover 

technique [9] and conditional Poisson regression [10,11] on 
the hierarchical clusters grouping the same days of week. The 
bottom clusters group the 4 or 5 days having the same hierar-
chical label <year:month:day of week>. They form the princi-
pal factor infl uencing the health response to the pollution and 
weather factors. In the syntax of the R software tool [12,13], 
the model of delayed health response to an air pollutant dose 
has the form FitModel = gnm(Mortality ~ AP + ns (T,3) + 
ns(RH,3), family=poisson, eliminate=factor(cluster)).

The model specifi es the health variable Mortality represent-
ing daily count of deaths. AP (air pollution), T (temperature), 
and RH (relative humidity) enter the model lagged by the same 
number of days. The weather factors appear in the model as 
natural splines (with 3 degrees of freedom) fi tting the weather 
variables. Application of the spline technique mediates in-
fl uences of outliers in data and gives better-fi tting models. 
The computations were performed by the R statistical soft-
ware. For the model above, R implements the log-linear (LL) 
approach: the model fi tting routine returns, among else, co-
effi cient Beta, the slope of the logarithmic increase of rela-
tive risk (RR) with an increase in the pollution level Dose. 
In that notation, RR=exp(Beta*Dose); this is a popular scheme 
of estimating risks associated with changes in air pollution 
[14]. This paper follows the same scheme, but it adds fl exibil-
ity to the concentration-response function and makes it more 
informative.

This paper also proposes taking advantage of knowing C-
RFs for all relevant exposure lags and constructing the C-RF 
expressing the current response to the cumulative exposure 
in the last several days. The model above has been used to 
compute the response to air pollution caused by ground-level 
ozone (O3); the variable representing the levels of O3 is de-
noted Z. Traditionally, such a crude variable is submitted into 
a statistical model in order to obtain the potential relationships 
between air pollutants and health outcomes. Here, the follow-
ing transformation of Z is performed in order to put in relief 
the shape of the response function around average ozone con-
centrations and tame the response at concentration extremities:

In the above formula, the parameters A, μ, τ control the 
shape of transformation T. Constant r is the range of Z, μ is 
said location parameter, and τ decides about the curvature of 
LWF(Z) [14]. Computing the model consists in determining 
the values of parameters in view of the goodness of fi t of f(Z) 
to a linear combination of predictors; the case-crossover es-
timation technique is realized as conditional Poisson regres-
sion. The Akaike’s information criterion (AIC, see Appendix, 
Program 1) of goodness of fi t is applied. Since the model is 
computed in log-linear confi guration, the fi nal result is the 
concentration-response function

where and LWF is the logistic weighted
function (LWF):

parameter β is estimated in the model together with the pa-
rameters of the linear combination of predictors.

Once the series of concentration-response functions for lags 
giving positive statistically signifi cant at p-value <0.05 results 
is produced, the functions can be aggregated into one C-RF of 
the same parametric profi le. Here, a least square approxima-
tion can be applied. The new values of parameters A, μ, τ, and 
β describe a function associating the current health risk result-
ing to the cumulative exposure in recent days.

RESuLtS

Within the period of the study (10,592 days), 441,272 non-
accidental deaths occurred. Among the non-accidental deaths, 
the most frequent are deaths related to cardiac and respiratory 
health problems. Figure 1 shows the histograms of the cardiac 
and respiratory mortality and other non-accidental mortality. 

FIGuRE 1. Histograms of mortality and two weather factors.
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tABLE 1. Parametric descriptions of concentration-response functions 
for lagged exposure to ozone and the resulting non-accidental mortality 
in the period 1987-2015 in Montreal, Canada.

C-RF(Z)=exp(β(Z)), β(Z)=Beta*log(1+Z/A)*LWF(Z,τ,μ)

Lag Beta SE μ τ A

0 7.82 1.87 300.89 0.81 1932.32

1 3886.24 496.56 506.55 0.27 680.10

2 6.06 1.26 78.35 0.06 7040.00

4 0.10 0.03 54.66 0.05 146.56

5 0.18 0.07 99.99 0.25 150.03

6 0.16 0.07 99.95 0.61 150.05

7 0.19 0.07 100.02 0.36 150.03

8 -0.05 0.03 62.84 -0.02 149.26

The figure also shows the histograms for temperature and 
relative humidity. They inform about weather conditions in the 
study area and period. Table 1 summarizes the results obtained 
when analysing the lagged exposures. For each considered lag, 
(here from lag 0 to lag 8) C-RF was fitted and shape param-
eters A, μ, τ , as well as response magnitude β with its standard 
error were estimated.

dISCuSSIon

It is a well established fact that the relative probabilities of 
discrete outcomes in a Poisson process depend logarithmically 
on the strength of the stimuli guiding the process. In reality, the 
stimuli are usually random events forming a Bernoulli process, 
where strength means count of successes, and the logarithmic 
dependence is a mathematical fact. With a slight overstretch 
of the notion of discrete process, an air pollutant measured in 
ppb and influencing a public health outcome can be considered 
a Bernoulli process and the measured concentration becomes 
the strength of influence.

However, the concentration is also a measure of pollution 
dose taken by a person. The health effect of an increase of the 
dose depend not only on the increase, but also on the actual 
measure of the dose. In order to find the region of the dosage 
where increases have the highest impact, an added flexibility 
of concentration-response function is needed [15-22]. A va-
riety of parametric modifications of the generic logarithmic 
shape can be considered, but weighing the profile by the lo-
gistic weighted function LWF appears to be the simplest, yet 
effective, modification. As a variation on a sigmoidal function 
is of interest the estimated parameters, μ (location) and τ (cur-
vature), well define the C-RF in the region of pollutant concen-
trations range [14].
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of log-linear models created using the case-crossover com-
putational scheme it may happen that the convergence is not 
reached. This occurred for the case of lag 3.

FIGURE 2. Histogram of ambient ozone and the C-RF profiles.

Panel a) in Figure 2. illustrates the histogram of daily con-
centrations of ground ozone in this study’s period and setting. 
Panel b) shows the C-RF shape obtained when the exposure 
to ozone is lagged by 2 days. Panel c) shows all the shapes 
defined by the parameters listed in Table 1, Panel d) shows the 
C-RF function associating the current aggregated risk to the 
cumulative exposure in 7 last days. The parametric description 
of the function is given in Table 2.
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APPEndIX
############# PROGRAM 1 ###############################
# Author: M. Szyszkowicz
# Program 1: Fits individual (by lags) C-RF shapes.
#######################################################
library(sme) # To have AIC (Akaike’s IC)
library(gnm); library(splines); library(quantmod)
options(digits=6); options(na.action=”na.exclude”)
#Read the data: health and environmental
datSET <- read.table(„MontrealD.csv”,header=TRUE,sep=”,”)
#########################
# CREATE STRATA YR x MONTH x DOW
datSET$Y <- as.factor(datSET$year)
datSET$M <- as.factor(datSET$month)
datSET$W <- as.factor(datSET$dow)
##### Define hierarchical clusters.
datSET$Cluster <- as.factor(datSET$Y:datSET$M:datSET$W)
attach(datSET); nameF=”RESLALL.txt”
#########################################################
# Define the function to minimize AIC
funLL <- function(param){
mu <- param[1]; tau <- param[2]; A <- param[3]
rtau= tau*diff(range(xs,na.rm=TRUE))
# Transformation T(Z)
# Other functions f(z): #XT<-sqrt(xs)/(1+exp((mu-xs)/rtau))
XT <- log(1+xs/A)/(1+ exp((mu-xs)/rtau))
#The used model:
modelG <- gnm(MORTALITY ~ XT  + TNS + HNS,
data=datSET, family=poisson, eliminate=factor(Cluster))
# Retrieve the coefficients: Beta, SE, and p-value.
B=unname(summary(modelG)$coeff[1,1])
SE= unname(summary(modelG)$coeff[1,2])
P=unname(summary(modelG)$coeff[1,4])
RES=c(B,SE,mu,tau,extractAIC(modelG)[2]);  
# The results sent to the file: collect all iterations
sink(file=nameF); print(RES); sink()
return(extractAIC(modelG)[2])
}##### Function description
##### Define Lag=M; air pollutant (xs)
##### Represent Temperature and relative humidity as ns (*,df=3)
M=1; xs = Lag(O3H8,M)
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T=Lag(TEMP,M);  H=Lag(RHUM,M)
TNS=ns(T,df=3);  HNS=ns(H,df=3)
# Search for the best fit = find the optimal parameters mu, tau, and A
nlminb(c(100,0.1,150.0), funLL); #initial values, function funLL – returns AIC
#### Retrieve the last recorded line of the result (RES) 
datX=read.table(nameF);  resT=(tail(datX,1))
B=(resT[1,2]) ; SE=resT[1,3]; mu=resT[1,4]; tau=resT[1,5] 
########################################
### Calculate RR and 95%CI
# Table 1, Lag 1: mu=506.55, tau=0.27, A=680.10
Low=B-1.96*SE; Upp=B+1.96*SE; xp <- sort(O3H8)
rtau= tau*diff(range(xp,na.rm=TRUE))
# Other T(z): gg = sqrt(xp)/(1+exp((mu-xp)/rtau))
gg = log(1+xp/A)/(1+exp((mu-xp)/rtau))
yp=B*gg;  RR=exp(yp); Lyp= Low*gg;  Uyp= Upp*gg
LP = exp(Lyp);  UP= exp(Uyp)
##### Plot the C-RF for a specific lag
plot(xp,RR, ylim=c(min(RR,LP),max(RR,UP)),col=”white”)
lines(xp,RR, lwd=5,col=”red”); abline (h=1)
lines(xp,LP, lwd=4,lty=3, col=”blue”); lines(xp,UP, lwd=4,lty=3,col=”blue”)
############ The END#################################
####&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&####
##***********************************************##
################## PROGRAM 2 ##########################
# Author: M. Szyszkowicz
# Program 2: Fits the global C-RF shape.
#######################################################
library(MASS);  library(minpack.lm) 
#Read the data (Table 1)
dataIN <- read.table(„ResLLogzA.csv”,header=TRUE,sep=”,”); attach(datIN)
# Creat the X-axis; ozone from 0 to 200, Z=O3
xp=seq(0, 200, by=0.1);  x=xp; xa <- xp
N=7; N1=N+1; MIN=2; MAX=-2
#Prepare the data frame by lags 0-7
for (k in 1:N) {
if (k==1){
X <- xa;  TRR=as.vector(X)
TLR=TRR; TUR=TRR}  # for k=1
# The names in dataIN should be as used (TAU, etc.)
rtau= TAU[k]*diff(range(X,na.rm=TRUE))
logit=1/(1+exp((MU[k]-X)/rtau))
XT=log(X/AP[k]+1)*logit; y=BET[k]*XT
yl=(BET[k]-1.96*SEB[k])*XT; yu=(BET[k]+1.96*SEB[k])*XT
rr=exp(y);  rl=exp(yl);  ru=exp(yu)
TRR=cbind(TRR,rr);  TLR=cbind(TLR,rl);  TUR=cbind(TUR,ru)
# Find minimum and maximum values for plot
mi=min(rl)
if( mi<MIN) {MIN=mi}
mx=max(ru)
if (mx>MAX) {MAX=mx} 
if (k==1)
{xa=x;ya=rr;yL=rl;yU=ru}
else{
xa=c(xa,x); ya=c(ya,rr); yL=c(yL,rl); yU=c(yU,ru) }
}# # Define frame with X, RR, RRlower, and RRupper (for each lag)
dfram=data.frame(xa,ya); dframe=dfram[order(xa),]
dframL=data.frame(xa,yL); dframLe=dframL[order(xa),]
dframU=data.frame(xa,yU); dframUe=dframU[order(xa),]
################Define plot area (white) #############
plot(X,rr, ylim=c(MIN,MAX), col=”white”); abline(h=1)
################ Fit a common C-RF for RRs ######################
#Start values:
r= diff(range(xp,na.rm=TRUE))
A=3.0; T=0.3; M=1; P= 0.1
fitM = nlsLM(dframe$ya~  ((dframe$xa+A)/A)^(T/(1+exp(-(dframe$xa-M)/(r*P)))), 
start = list(A=A, T=T, M=M,P=P), data=dframe)
lines(dframe$xa,fitted(fitM), lwd=6,col=”red”)
# summary(fitM)
#########Fit a common C-RF for lower RRs ##########################
A=3.0; T=0.3; M=1; P= 0.1
fitL = nlsLM(dframLe$yL~  ((dframLe$xa+A)/A)^(T/(1+exp(-(dframLe$xa-M)/(r*P)))), 
start = list( A=A,T=T, M=M,P=P), data=dframLe  )
lines(dframe$xa,fitted(fitL),  lwd=6,lty=3,col=”blue” )
# summary(fitL)
####################Fit a common C-RF for upper RRs ###################
A=3.0;  T=0.3;  M=1;  P= 0.1 
fitU = nlsLM(dframUe$yU~  ((dframUe$xa+A)/A)^(T/(1+exp(-(dframUe$xa-M)/(r*P)))), 
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start = list(A=A,T=T, M=M,P=P), data=dframUe  )
lines(dframe$xa,fitted(fitU),  lwd=6,lty=3,col=”blue” )
# summary(fitU)
##### To see individual curves on a common plot
for (k in 1:N+1){
lines(X, TRR[,k], lwd=4, col=”red”) }
abline(h=1)
###################################################################
for (k in 1:N+1){
lines(X, TLR[,k], lwd=3,lty=3,col=”black”) }
###################################################################
for (k in 1:N+1){
lines(X, TUR[,k],lwd=3,lty=3, col=”blue”) }
##################The obtained C-RF coefficients #### Output from R ########
Middle RR - Parameters:
Estimate Std. Error t value Pr(>|t|)    
A 27.447727  15.460105   1.775   0.0759 .  
T  0.061867   0.014751   4.194 2.75e-05 ***
M 84.193094   3.464141  24.304  < 2e-16 ***
P  0.118445   0.005193  22.810  < 2e-16 ***
###########################################
Lower RR - Parameters:
Estimate Std. Error t value Pr(>|t|)    
A 26.521316  25.703732   1.032   0.3022    
T  0.031278   0.012706   2.462   0.0138 *  
M 87.895953   5.435640  16.170   <2e-16 ***
P  0.115488   0.007861  14.692   <2e-16 ***
############################################
Upper RR - Parameters:
Estimate Std. Error t value Pr(>|t|)    
A 28.310907  12.378476   2.287   0.0222 *  
T  0.093303   0.017420   5.356 8.61e-08 ***
M 82.807825   2.789874  29.682  < 2e-16 ***
P  0.119251   0.004325  27.572  < 2e-16 ***
################### The END #########################


