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Abstract

Introduction. There is a large body of research which suggests that air pollutants might affect infectious diseases, their trans-
mission, severity, and a length of recovery.

Aim. The aim of this study is to examine the relationships between ambient air pollution and emergency department (ED) visits 
for influenza and viral pneumonia in Toronto, Canada. 

Material and Methods. The National Ambulatory Care Reporting System database was used to drawn ED visits (4 282 days). 
Five ambient air pollutants: carbon monoxide, nitrogen dioxide, sulphur dioxide, ozone (CO, NO2, SO2, O3, O3H8 – ozone as  
a maximum eight hour average, respectively), and fine particulate matter (PM2.5) were examined. In addition, the Air Quality 
Health Index (AQHI; combines NO2, O3, and PM2.5) was tested. Conditional Poisson models were constructed using daily counts 
of ED visits. Temperature and relative humidity in the models were represented by natural splines. Air pollutants and weather 
factors were lagged by 0 to 14 days. The analysis was done by strata of age group, sex, and two seasons.

Results. In the period of the study, 26,200 ED visits were identified; 13,963 for females and 12,237 for males. For each air 
pollutant, 270 models were generated (18 strata x 15 lags). Ambient air pollution concentrations lagged by 10 and 11 days have 
the highest impact on ED visits, with 48 and 47 positive associations, respectively. Ozone has 181, sulphur dioxide has 104,  
and PM2.5 has 76 among the 417 total positive statistically significant (P-Value<0.05) associations. For all persons an increase 
(12.8 ppb) in ambient ozone lagged by 0, 1, and 2 days gives the following relative risks and their 95% confidence intervals 1.214 
(1.135, 1.299), 1.200 (1.121, 1.284), and 1.179 (1.102, 1.263), respectively. 

Conclusion. The results suggest that exposures to urban ambient air pollution affect the number of ED visits for viral respira-
tory illness.
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AIM

The primary aim of this study is to investigate the hypoth-
esis that there is a correlation between ambient air pollution 
concentration levels and emergency department (ED) visits for 
influenza and viral pneumonia. 

Our hypothesis is based on the principle that air pollution 
may have an immunosuppressive effect on the body’s defens-
es [5,6]. It is thus reasonable to expect associations between 
elevated air pollution levels and higher ED visit frequencies 
for influenza and viral pneumonia. While we cannot directly 
contrast associations between air pollution and influenza ED 
visits with those of SARS-CoV-2, these viruses share numer-
ous similarities [7], which suggests that the results obtained in 
this study may carry over to associations observed between the 
SARS virus and air pollution concentrations. 

IntRoduCtIon

The relationship between elevated air pollution concentra-
tions and increased number of emergency department (ED) 
visits, morbidity, and mortality is well established in the lit-
erature related to environmental epidemiology [1-3]. In recent 
years, we have witnessed the expansion of the literary body on 
the correlation between air pollution and various health effects 
from respiratory and cardiac conditions to diseases belonging 
to categories such as metabolic, infective, cognitive, psycho-
logical [3,4]. There does exist, however, a wide spectrum of 
associations that remain unexplored. The present pandemic of 
SARS-CoV-2 is an opportunity to test associations between 
air pollution and influenza cases, which could potentially be 
analogous to the interaction between air pollutants and SARS-
CoV-2. Literature on the effect of air pollution on the behavior 
of influenza infections is substantial; hence associations ob-
served in this study may be supported by previously estab-
lished biological processes. 
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MAtERIAL And MEtHodS

Health data
The analyzed data were drawn from the National Ambu-

latory Care Reporting System database (NACRS 2020, [8]) 
for a period of 4,292 days (April, 2004 – December, 2015). 
The NACRS database organizes health data for all hospital-
based and community-based ambulatory care, including re-
cords on emergency department (ED) visits. ED visits were 
filtered only by the primary cause classification of the visit, 
and extracted from the NACRS database if classified under 
ICD-10 codes J09-J12 (influenza and viral pneumonia). The 
geographical area of this study is the Census Division (CD) 
of Toronto, Ontario, Canada. The population studied were in-
dividuals registered in ED with home addresses located in the 
area determined by the CD of Toronto, an area with a popu-
lation of 2,731,571 people in 2016. The resulting population 
density of this region is an estimated 4,334.4 people per square 
kilometer. The retrieved cases were organized as daily counts. 
The applied statistical models use these counts as the investi-
gated health outcomes. As a time unit – one day is used.

Environmental data
The air pollution data were obtained from the National Air 

Pollution Surveillance (NAPS), maintained by Environment 
and Climate Change Canada (NAPS 2020, [9]). Hourly data 
from seven air pollution monitoring stations were averaged 
over one day to estimate air pollution concentration levels for 
the whole area. Daily values of air pollutants and weather con-
ditions were organized as one dataset and linked with daily 
ED visits counts. This dataset (air pollution and weather) has 
already been used in other studies related to ambient air pol-
lution exposure to assess short term mortality risks and excess 
mortality in Toronto [10,11].

Five urban ambient air pollutants were investigated in the 
statistical models: carbon monoxide (CO), nitrogen dioxide 
(NO2), ground-level ozone (O3 – as a daily average, O3H8 – 
as a maximum eight hour average), fine particulate matter 
(PM2.5), and sulphur dioxide (SO2).

In addition to these five air pollutants, we examined the 
Air Quality Health Index (AQHI), an index constructed using 
three individual ambient air pollutants (O3, NO2, and PM2.5). 
The index values incorporate air pollutant concentration levels 
and the health risk estimations determined by mortality rates 
in large Canadian cities [12]. AQHI values are published in 
Canada as integer numbers on a scale (1-10, 10+) to represent 
the risk related to ambient air quality. In this study however, 
continuous values of the AQHI are used. The values were cal-
culated according to the formula [12].

Statistical model
The case-crossover schema applied in this study is designed 

to control for all measured and unmeasured time-invariant con-
founders, including smoking, socioeconomic position, and co-
morbidity [13]. In the constructed models, temperature and rel-
ative humidity were incorporated in the form of natural splines 
with three degrees of freedom. The time-stratified approach 
was used to group the data by the same weekday in a common 
month [14]. The statistical model outputs were the coefficients 
(Beta) related to air pollutants and their standard errors (SE-
Beta). Using these values (Beta, SEBeta), relative risks (RR) 
could be easily determined for an increase in the concentration 
levels by taking the exponential of the product of a one inter-
quartile range (IQR) and Beta (RR=exp(Beta*IQR)). The sta-
tistical calculations were done using conditional quasi-Poisson 
regression models [15-20]. Given the relatively short incuba-
tion period of both SARS-CoV-2 and influenza, this study uses 
one day as the time unit. The calculations were performed in R 
statistical software using the gnm procedure (generalized non-
linear models) with the “quasipoisson” option enabled (R Core 
Team, 2018; [21]). In total, 2,160 statistical models (15 lags x 
18 strata x 8 – air pollutants or index values) were constructed. 
The realized statistical models have the following form

ModelFLU = gnm(EDFLU~APollutant + ns(Temperature,3) 
+ ns(RelativeHumidity,3)),

where the options data=EDVisitsFLU, family=quasipoisson, 
eliminate=factor(Cluster) were added. EDFLU represent daily 
counts for the considering strata. The quasi-Poisson is used 
to model an overdispersed count variable. Here Cluster rep-
resents a group (4 or 5) of days of the same weekday in a 
common month and the Cluster has the hierarchical-calendar 
driven structure <year:month:weekday>. 

The results from all models are listed in Supplementary 
Materials. A p-value <0.05 was considered statistically sig-
nificant, however, given the multiple comparison limitation, 
statistical significance was also evaluated using the more strin-
gent criterion of p-value <0.001.

Ethics
The Health Canada Research Ethic Board determined that 

the study is IRB exempt, given that patient data were pre-ex-
isting and de-identified.

RESuLtS

The results are based on ED visits identified using ICD-10 
codes J09–J12 (covering influenza and viral pneumonia; In-
fluenza due to certain identified influenza virus, Influenza due 
to other identified influenza virus, Influenza with pneumonia, 
other influenza virus identified, Influenza, virus not identified, 
and Viral pneumonia, not elsewhere classified). In the studied 
period, 26,200 such ED meeting the inclusion criteria visits 
were identified, of which 13,963 were female patients and 
12,237 were male patients. Table 1. shows the statistics on the 
daily counts of ED visits for all 18 strata. In the warm months 
(April-September), there were 12,333 visits and in the cold 
months (October-March) there were 13,867 ED visits. 

Additionally, another form of the index, here referred to as 
the AQHIX, was calculated using O3H8 concentration levels 
rather than ozone (O3) where, instead of a daily average, an 
average of the peak 8 hours of ozone pollution is used. The 
AQHIX emphasizes the presence of ozone among its three air 
pollutant components more than the AQHI. 
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TABLE 1. Statistics on ED visits for influenza, ICD-10 codes: J09 – J12. 
Toronto, Canada, April, 2004 – December, 2015.

Strata/Factors Ed visits Min Q1 Median Mean Q3 Max

All 26,200 0 1 2 6.1 5 368

Female 13,963 0 0 1 3.3 3 184

Male 12,237 0 0 1 2.9 3 184

Warm All 12,333 0 0 1 5.2 4 368

Warm Female 6,308 0 0 1 2.7 2 184

Warm Male 6,025 0 0 1 2.5 2 184

Cold All 13,867 0 2 4 7.2 8 85

Cold Female 7,655 0 1 2 4.0 4 55

Cold Male 6,212 0 1 2 3.2 4 40

Age 0-10 All 4,983 0 0 0 1.2 1 154

Age 0-10 Female 2,171 0 0 0 0.5 0 68

Age 0-10 Male 2,812 0 0 0 0.7 0 86

Age 11-60 All 17,967 0 0 2 4.2 4 202

Age 11-60 Female 9,810 0 0 1 2.3 2 107

Age 11-60 Male 8,157 0 0 1 1.9 2 95

Age 60+All 3,250 0 0 0 0.8 1 28

Age 60+ Female 1,982 0 0 0 0.5 0 19

Age 60+ Male 1,268 0 0 0 0.3 0 13

PM2.5 μg/m3 0.1 4.7 7.1 8.9 11.2 65.5

NO2 ppb 3.2 11.1 15.0 16.1 19.9 59.8

O3 ppb 1.7 16.8 23.0 23.5 29.6 62.1

O3H8 ppb 9.0 33.0 41.0 43.7 52.0 107.0

SO2 ppb 0.0 0.5 1.0 1.4 1.7 12.0

CO ppm 0.0 0.2 0.2 0.3 0.3 1.1

AQHI number 1.0 2.4 2.9 3.0 3.4 7.6

AQHIX number 1.6 3.6 4.2 4.4 5.1 10.3

Temperature oC -22.2 1.7 10.0 9.5 18.4 31.2

Relative Humidity % 31.7 63.9 70.9 70.7 78.2 98.8

Notes: The column labelled as “ED visits” shows the number of ED visits and the used 
units for environmental factors, Min – minimum, Max –maximum, Q1-25th percentile, 
Q3-75th percentile.

Persons under the age of 11 accounted for 4,983 visits, 
17,967 were persons between 11 and 60 years of age, and fi-
nally those older than 60 counted for 3,250 visits. Table 1. also 
summarizes the statistics on ambient air pollutants, tempera-
ture, and relative humidity for the period of the study. 

Figures 1, 2, and 3 show the frequencies of positive statisti-
cally significant associations (value of the coefficient Beta is 
positive) obtained for the corresponding specifications (stra-
tum, air pollutant, lag) given in a row and column. The cells 
show the total number of such associations. For example, in 
Figure 1, in the row identified as “All” and a column identified 
as “lag 0”, the value provided in the cell (here 2) with such 
coordinates indicates the total number of positive associations 
for any of the considered air pollutants. The colors in Figures 
1-3. are applied to distinguish and highlight the patterns of as-
sociations. There were a total 417 positive statistically signifi-
cant associations (using a p-value<0.05) among all pollutants 
and for all lags and strata. When applying a more stringent 
p-value criterion (<0.001) we observed 215 positive and statis-
tically significant associations. Thus 52% of the positive statis-
tically significant associations persisted under a more demand-
ing criterion. While there were many negative associations 

for AQHI, AQHIX, CO and NO2, none of them remained sig-
nificant when applying a p-value<0.001.

Figure 1 is organized with the 18 strata in rows and 15 lags 
(0-14 days) in columns, thus summarizing the counts of posi-
tive statistically significant associations for all pollutants at all 
strata and lags. Lags of 10 and 11 days saw the highest to-
tal number of positive associations at 48 and 47 respectively, 
among the grand total of 417.

FIGURE 1. All pollutants combined. Frequencies of positive associations: 
strata (rows), lags (columns). Toronto, Canada. 2004-2015.

Figure 2. again summarizes total positive associations, 
however, it does so by the 8 air pollutants and indexes in rows 
and the 15 lags in columns. It reveals a stark separation be-
tween pollutants or indexes, with AQHI, AQHIX, CO and NO2 
accounting for only 16 associations, while the remaining pol-
lutants account for 401. Of the latter total, ozone (O3) accounts 
for 181 of the observed associations. 

FIGURE 2. All strata combined. Frequencies of positive associations: air 
pollutants (rows), lags (columns). Toronto, Canada. 2004-2015.

Figure 3 summarizes the results by all lags, with 18 strata 
and the 8 air pollutants or indexes in its rows and columns, 
respectively. The highest total of significant positive associa-
tions corresponded to the ‘Warm All’ stratum, accounting for 
all genders and age groups during the warmer months, with 36 
observed associations.
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Figures 4a and 4b represent a visualization of every indi-
vidual model significance result per combination of stratum, 
lag and pollutant. The associations are classified as statistically 
significant positive (represented with a 1), negative (-1) or no 
significant association (0). Colours are used to aid the visu-
alization of these relationships (red, green, and white, respec-
tively). The columns represent lags from 0 to 14 days. The cor-
responding numerical values of coefficients β and its standard 
error are available as Supplementary Materials. 

As the number of models is large, the relative risk is only 
shown for a particular pollutant and lags at all strata. The re-
maining numerical results are given in Supplementary Materi-
als. Ambient ozone shows the highest number of positive as-
sociations among the considered air pollutants and indexes, 

FIGURE 3. All lags combined. Frequencies of positive associations: strata 
(rows), air pollutants (columns). Toronto, Canada. 2004-2015.

FIGURE 4A and 4B. A map to numerical results; strata (rows), lags 
(columns). 0/white – no associations, and statistically significant: -1/green 
– negative, 1/red – positive. The results are grouped by air pollutants. 
Toronto, Canada. 2004-2015. 2004-2015.

TABLE 2. Estimated RRs and their 95% confidence intervals (95% CI) CIs for an increase of concentration of ozone (O3) by one interquartile range 
(IQR=12.8 ppb) for Respiratory cases. Toronto, Canada, April 2004-December 2015.

Lags Lag 0 Lag 1 Lag 2

Person/Age/Season RR 95%CI RR 95%CI RR 95%CI
All 1.214 (1.135, 1.299) 1.2 (1.121, 1.284) 1.179 (1.102, 1.263)
Female 1.206 (1.120, 1.298) 1.206 (1.120, 1.299) 1.169 (1.085, 1.259)
Male 1.223 (1.131, 1.323) 1.192 (1.103, 1.289) 1.191 (1.101, 1.288)
Warm All 1.064 (0.980, 1.155) 1.055 (0.970, 1.147) 1.057 (0.970, 1.153)
Warm Female 1.057 (0.968, 1.154) 1.059 (0.967, 1.160) 1.031 (0.939, 1.132)
Warm Male 1.072 (0.976, 1.177) 1.051 (0.957, 1.153) 1.084 (0.984, 1.193)
Cold All 1.294 (1.223, 1.368) 1.286 (1.217, 1.360) 1.26 (1.193, 1.331)
Cold Female 1.284 (1.205, 1.367) 1.288 (1.210, 1.371) 1.253 (1.178, 1.333)
Cold Male 1.307 (1.223, 1.396) 1.285 (1.203, 1.371) 1.269 (1.189, 1.353)
Age 0-10 All 1.258 (1.124, 1.408) 1.234 (1.103, 1.381) 1.202 (1.075, 1.344)
Age 0-10 Female 1.322 (1.164, 1.501) 1.222 (1.076, 1.388) 1.138 (1.004, 1.291)
Age 0-10 Male 1.214 (1.072, 1.375) 1.244 (1.101, 1.406) 1.254 (1.109, 1.417)
Age 11-60 All 1.176 (1.098, 1.259) 1.163 (1.085, 1.245) 1.161 (1.083, 1.244)
Age 11-60 Female 1.149 (1.063, 1.241) 1.168 (1.080, 1.262) 1.161 (1.074, 1.256)
Age 11-60 Male 1.208 (1.113, 1.311) 1.156 (1.066, 1.254) 1.16 (1.069, 1.258)
Age 60+All 1.367 (1.239, 1.510) 1.355 (1.229, 1.494) 1.251 (1.135, 1.380)
Age 60+ Female 1.404 (1.258, 1.566) 1.388 (1.245, 1.548) 1.247 (1.119, 1.390)
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thus it is here illustrated. An increase in O3 concentration by 
one IQR (12.8 ppb) are shown in Table 2, along with the 95% 
confidence intervals.

SuPPLEMEntARY MAtERIALS

The corresponding files are located at https://github.com/
szyszkowiczm/TorontoFLU. These files are FLUToronto.csv 
(contains Beta and its standard error for 2,160 models), FLU-
TorontoAll.jpg (Figure 4.), FLUTorontoRRisk.csv (calculated 
relative risks for a one IQR increase), HistAQHI-AQHIX-CO-
NO2.jpg, HistO3-O3H8-PM25-SO2.jpg, HistTempRHum.jpg 
(these 3 files contain histograms), TorontoMapStation2015.jpg 
(contains Toronto’s map).

dISCuSSIon

The results obtained in this study demonstrate that certain 
air pollutants and the number of ED visits for influenza and 
viral pneumonia-related symptoms are positively associated. 
As seen in Figure 2, there is a strong division between pollut-
ants, with O3, SO2 and PM2.5 being more consistently associ-
ated with ED visits for influenza, while the AQHI, AQHIX, 
NO2 and CO exhibited few significant associations with ED 
visits. Given its adverse effect on the respiratory system, when 
contrasting our results with existing literature, it is surprising 
that NO2 was found to have no positive statistically significant 
correlation [5,22-26]. Ozone, however, was shown to have the 
greatest number of significant positive associations at lags up 
to 11 days, and for a majority of strata. Given its strongly oxi-
dative properties and evidence provided in this paper, it may 
be suggested that ozone is a strong moderator of viral infection 
in a population. When applying a more stringent p-value to de-
termine the number of significant associations, O3 saw 70% of 
associations remained significant. An interesting characteristic 
of ozone and its associations by strata and lags is the lack of 
association for early lags in the warm months when the strata 
are adjusted for seasonality. Cold weather has been shown to 
induce an increase in respiratory infections [27], thus the as-
sociations between lags 0 and 8 are expected. Intriguingly, all 
statistically significant positive associations (even at p<0.001) 
for warm weather strata are located after a lag of 5 days for 
a less constrained p-value, and after 9 days lag for p<0.001. 
This may suggest that warmer weather delays development 
of influenza symptoms, thus delaying an ED visit from initial 
exposure. 

PM2.5 also showed a high remainder of positive associa-
tions of 49% under a more stringent p-value. However, the 
associations were not as homogenous as it was observed with 
O3; rather, most associations were seen for lags 9 to 14, and 
showed negative statistically significant correlation for “cold” 
period strata as well as the oldest age group (60+) at p<0.05. 
At a stringent p-value, the most affected strata were children 
aged 0-10, as well as the “warm” period strata, both irrespec-
tive of gender. PM2.5 poses a danger to the respiratory system 
as smaller particles can penetrate much deeper into the lungs 
than PM10 or larger. Given their small size but large surface 
area, PM2.5 can act as a transport for viruses deep into the lungs 
[28]. 

While it did not show the same level of persistence as O3 or 
PM2.5, nevertheless SO2 had the second highest total of associ-
ations at 107. Again concentrated at the later lags, particularly 

10-13 days, SO2 proved to have similar patterns of associa-
tions as PM2.5. The “cold” period strata and age 60+ strata both 
saw few associations at p<0.05, and only 2 at p<0.001. Given 
that cold weather typically sees higher levels of air pollution 
and a higher likelihood of respiratory infection, this pattern for 
both PM2.5 and SO2 is curious. 

Given the provided evidence that air pollutants negatively 
affect lung immunity and viral resistance, it is justifiable to say 
that the results obtained in this study are reasonable. 

The results found in this study may be important to consider 
in the context of the ongoing SARS-CoV-2 pandemic. Dur-
ing the emergence of the SARS-CoV-2 pandemic (colloquially 
known as COVID-19), many medical institutions braced for a 
large influx of new patients. As emergency departments are at 
the front line of new patient admissions, they are particularly 
impacted by an increase in cases. While the current SARS-
CoV-2 pandemic provoked a surge of new research in domains 
of virology, medicine and epidemiology, it is very difficult to 
study the impact of air pollution on the interaction between the 
virus and large populations. Given the nature of this study and 
the data required to perform it, it will be impossible to create 
accurate statistical models at present, illustrating how respira-
tory infection emergency department visits are associated with 
air pollution levels. Hence, to study the impact of air pollution 
on how a virus such as SARS-CoV-2 affects ED visits, we turn 
to very common respiratory infections – influenza infections. 

There are, of course, differences between the two viruses 
which the authors acknowledge, but in the scope of this study, 
moderate differences in infection pathways could potentially 
be disregarded. The viruses are classified in different Balti-
more virus classes, but the pathways of cell infection are 
similar. SARS-CoV-2 is a (+)ssRNA virus, while influenza is 
a (-)ssRNA virus, both share an enveloped capsid with heli-
cal symmetry. Both viruses have similar incubation periods, 
where influenza infections present symptoms within 1-4 days 
of exposure [29], while SARS-CoV-2 (along with other SARS 
coronaviruses) has been shown to present symptoms within 5 
days post-exposure in the majority of cases [29,30]. Both vi-
ruses can be transmitted via droplets, surface contact and have 
been shown to be airborne [31-35]. These similarities in virus 
structure and incubation period may warrant the assumption 
that both viruses will capitalize on respiratory tracts affected 
by air pollution in similar ways. Thus, interpretation of our 
results for the influenza virus may carry over to SARS-CoV-2. 

Differences are to be expected between influenza and COV-
ID-19 when comparing ED visit numbers for different stra-
ta, however, elderly individuals infected with SARS-CoV-2 
present symptoms at a higher rate than younger individuals 
[32,36], while influenza is seen more commonly in the lat-
ter [37]. It is, therefore, necessary to contrast our results to 
evidence that air pollutants can facilitate viral infection in the 
respiratory tract. Literature provides clear indication of how 
pathways created by various pollutants affect viral infection. 
Exposure to the majority of individual pollutants examined in 
this study has been linked to lower immunological viral resist-
ance, ease of reinfection, and overall worse health outcomes. 
The primary mechanisms by which air pollutants weaken the 
immune system are oxidative stress [5,38,39], macrophage in-
activation, and reduced expression of hydrophilic surface pro-
teins [5,38,40]. All these mechanisms contribute to a weakened 
immune system, lung damage and a more acute inflammatory 
response in presence of a pathogen, leading to aggravated 



78 Pol J Public Health, Vol. 132 (2022)

morbidity and mortality associated with lung infections: NO2 
[5,22-26], PM2.5 [5,22,28,41-44], O3 [40,45-47] and SO2 [22] 
have all been shown to affect the lungs via one or more of the 
aforementioned mechanisms. No significant evidence can be 
found for carbon monoxide as a mediator for viral infection. 

The primary limitation of this study does not control for 
individual exposure levels, as exposure is based on an aver-
age of pollutant levels across multiple measuring stations. The 
other limitation is the comparison between the influenza virus 
and SARS-CoV-2. While the viruses share many similarities, 
it is unknown how they react to air pollutants in ambient air 
or inside individual cells. We also acknowledge that the many 
statistical models created in this study may or may not be ade-
quate, as there could be errors in disease classifications and en-
vironmental factors. The databases used to retrieve the afore-
mentioned data, NACRS and NAPS respectively, both utilize 
systems to limit any disease misclassifications (NACRS 2020, 
[8]) or inaccurate pollutant data (NAPS 2020, [9]). There is 
also a risk of false positive or negative associations given the 
large number of hypothesis tests performed, however this is 
mitigated by applying a more stringent p-value. 

ConCLuSIon

Ambient air pollution exposure is associated with ED visits 
in this study. Specifically, exposure 3 days before ED visits 
was shown to have the largest number of the positive associa-
tions with ED visits for influenza and viral pneumonia. The 
presence of ground level ozone in the ambient air shows the 
largest number of the positive associations, where sulphur di-
oxide shows the second largest number of such associations. 
In a conclusion, urban ambient air pollution may be related to 
an increased number of ED visits for certain infectious dis-
eases. This finding may be relevant to consider in the context 
of the ongoing SARS-CoV-2 pandemic.
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