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Computer guided analysis 
of hemodialyzed patients’ 
bioimpedance spectroscopy 
parameters

Analiza komputerowa parametrów 
uzyskanych przy pomocy 
bioimpedancji elektrycznej  
u pacjentów hemodializowanych

Streszczenie 

Wstęp. Monitorowanie stanu nawodnienia pacjentów 
dializowanych stanowi istotny aspekt kliniczny jakości 
ich leczenia. Bioimpedancja elektryczna, jako metoda 
wykorzystującą właściwości elektryczne tkanki poddanej 
działaniu prądu zmiennego, jest jednym z narzędzi, które 
służy określaniu stanu nawodnienia. 

Cel. Celem badania było użycie analizy komputerowej 
parametrów uzyskanych na pacjentach hemodializowanych 
przy pomocy bioimpedancji elektrycznej do tworzenia algo-
rytmów – drzew decyzyjnych.

Materiał i metodyka. Pomiary zostały przeprowadzone 
na dwóch grupach pacjentów – 50 przewlekle hemodiali-
zowanych (grupa badana) 10 minut przed hemodializą i 46 
zdrowych ochotnikach (grupa kontrolna). Badane parame-
try to TBW (całkowita woda ustroju), ECW (wielkość prze-
strzeni zewnątrzkomórkowej) i ICW (wielkość przestrzeni 
wewnątrzkomórkowej). Do pomiarów bioimpedancji użyto 
analizatora bioimpedancji (model 4000B, Xitron Technolo-
gies, San Diego, CA, USA) przy użyciu elektrod (7,7 x 1,9 
cm²). Bioimpedancję mierzono w logarytmicznym spektrum 
10 częstotliwości, rozpoczynając od 5 do 500 kHz.

Wyniki. Wyniki obliczeń na normalnych, dyskretyzo-
wanych i normalizowanych danych przetwarzano w śro-
dowisku matematyczno-statystycznym R z pomocą wolno-
dostępnej biblioteki inteligentnych algorytmów Weka, aby 
wygenerować proste reguły identyfikacji wspomnianych 
wyżej chorób. Wykonane eksperymenty potwierdziły moż-
liwości uzyskania za pomocą procedur J48 (decision tree) 
i QDA (quadratic discriminant analysis) dobrych klasyfika-
torów automatycznie detekujących właściwego pacjenta po 
uprzednim wytrenowaniu ich na uzyskanych danych me-
dycznych. Dzięki odpowiedniemu algorytmowi testowania 
klasyfikatorów uzyskano drzewa decyzyjne z błędem kla-
syfikacji poniżej 5%. W przyszłości będzie możliwe dalsze 
zmniejszenie błędu klasyfikacji poprzez zastosowanie na 
większej ilości danych bardziej złożonych algorytmów two-
rzenia klasyfikatorów.

Słowa kluczowe: wyszukiwanie danych, drzewko decyzyjne, 
stan nawodnienia, wielkość przestrzeni zewnątrzkomórko-
wej, wielkość przestrzeni wewnątrzkomórkowej.
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Abstract 

Introduction. Monitoring the hydration level in dialyzed 
patients is an important clinical aspect of treatment quality. 
Bioimpedance is one of the methods using electric properties 
of body tissues subjected to an alternating multi-frequency 
amplitude current in order to assess hydration states.

Aim. The aim of the study was to use the computer 
guided analysis of hemodialyzed patients’ bioimpedance 
spectroscopy parameters for desion trees algorithm.

Material and methods. The measurements were conduc-
ted on two groups – 50 patients on chronic hemodialysis (the 
test group) 10 minutes before hemodialysis and 46 healthy 
volunteers (the control group). The studied parameters were: 
TBW (total body water), ECW (extracellular water) and 
ICW (intracellular water). For bioimpedance measurements 
a bio-impedance analyzer was used (Xitron Technologies, 
San Diego, CA, USA, model 4000B Bioimpedance spectros-
copy device measuring at 50 frequencies between 5 kHz and 
1 MHz) with electrodes (7.7 x 1.9 cm²). Bioimpedance was 
measured in a logarithmic spectrum of 10 frequencies start-
ing from 5 to 500 kHz. 

Results. The results of calculations on normal, discredited 
and normalized data were computed in the R language 
environment with algorithms from RWeka library to generate 
simple rules of identification of the aforementioned diseases. 
The executed experiments affirm a possibility to create good 
classifiers for detecting a proper patient with the help of 
J48 (decision tree) i QDA (quadratic discriminant analysis) 
but only after previous training. Thanks to an appropriate 
algorithm for testing classifiers, decision trees with the  
classification error below 5 % were obtained. In the future it 
will be possible to further diminish the classification error by 
measuring more variables using more complex algorithms 
for testing classifiers.
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INTRODUCTION

Monitoring the hydration level in dialyzed patients is an 
important clinical aspect of treatment quality. There are many 
tools to assess the hydrate status. When a current method 
for monitoring hydration is inadequate, other methods must 
be considered to provide increased or improved treatment 
quality for the patient population. The fluid removed 
from the patient during dialysis is taken away with the 
use of ultrafiltration mainly from the intravascular space. 
Knowledge and understanding of other fluid compartments 
of the body during this dynamic process can be beneficial 
in reducing complications associated with this therapy. 
Bioimpedance has been established as a valuable tool in the 
evaluation of hydration states of various compartment of the 
body in the dialyzed patient [1-3]. 

The bioimpedance technique incorporates precise 
evaluation of hydration levels using physiological data 
concerning the assessment of water compartment sizes, 
such as TBW (total body water), ECW (extracellular water), 
ICW (intracellular water) and interstitial compartments  [4]. 
The specific mechanisms of this technique are based on an 
elementary principle that electrical resistance of a cylinder is 
directly proportional to the length and inversely proportional to 
the cross section area of the cylinder multiplied by the density. 
This method is based on the evaluation of electrical resistance 
in body tissues subjected to an alternating multi-frequency 
amplitude current  [5]. Although the principal bioimpedance 
techniques were first introduced by Thomassett in 1963, 
an increased interest in this technique appeared in the early 
seventies of the last century when Nyboer demonstrated a 
correlation between bioimpedance value assessed with the use 
of an alternating current and changes in the blood volume [6]. 
Many articles described the method of the whole body 
bioimpedance analysis (WBIA). The WBIA method places 
electrodes on the palm and foot (the wrist and ankle placement 
of electrodes have also been used). An alternating current, 
with frequencies from 5 to 500 kHz reaches the electrodes 
placed at the level of metacarpophalangeal joint in finger III 
of the upper extremity and at the base of metatarsophalangeal 
joint in toe II and III of the lower extremity – the voltage is 
measured between the electrodes placed on the wrist in an 
imagined line connecting the styloid process of the ulnar bone 
with the styloid process of the radial bone and the  electrode 
placed in the line connecting medial and lateral condyle. It is 
possible, utilizing the bioimpedance technique to choose an 
option of one current frequency usage or a multi-frequency 
option with an amplitude from a few to a few hundred (500) 
kHz. It should be noted that the WBIA assessment is dependent 
on the changes in body position. Therefore, the body position 
changes must be considered when analyzing results using 
this method. The segmental bioimpedance technique (SBIA) 
is an assessment of independent body segments, such as 
upper extremities, trunk, and lower extremities. The analysis 
of the results using this technique has been observed to be a 
more precise evaluation of hydration states and dynamical 
changes during a dialysis session. As previously stated, the 
specific mechanisms of the WBIA technique are based on an 
elementary principle that electrical resistance of the cylinder is 
directly proportional to the length and inversely proportional 
to the cross section area of the cylinder multiplied by the 
density.

	 Z=qL/A 	 (1)

where: Z – impedance (Ohm), g – tissue density (Ohm/
cm), L – cylinder’s length, A – cross-section area of the 
cylinder 

	 ZxL/L=qxL/A x L/L	 (2)

Since A x L = V (volume, cm³), we receive a following 
correlation:

	 V=qxL2/R 	 (3)

where: L (cm) – length of cylinder, R (cm) – electrical 
resistance  and q – cylinder density 

The assumption that a human body is a sum of homogenous 
cylinders and a current can run through extracellular and 
intracellular space, was an impulse for Hoffer in 1969 to 
apply this method in measuring the total body water (TBW). 

Taking into account the voltage quantity we calculate the 
electrical resistance (impedance) which is next converted in 
proportion to the cylinder’s volume (upper extremity, lower 
extremity, trunk) with the use of the formula (3).

The terms: electrical impedance and electrical resistance 
are often used interchangeably. In fact, impedance comprises 
the function of  inductive resistance (R) and capacitive 
resistance (Xc). 

	 Z2 = R2 + Xc2 	 (4)

The inductive resistance (R) refers to extracellular fluid 
impedance, whereas capacitive resistance (Xc) refers to 
intracellular fluid resistance. Concluding from the formula 
(1), impedance is a function of the cylinder’s length (upper 
extremity, lower extremity, trunk) and cross-sectional area of the 
cylinder (A) with a given current frequency. The inductive (R) 
and capacitive (Xc) resistance values depend on the frequency 
of alternating current. The correlation between capacitive and 
inductive resistance is shown in Fig. 1a.

FIGURE 1. a) The relationship between capacitive (R) and inductive 
(Xc) resistance with a given frequency of an alternating current; R – 
inductive resistance, Xc – capacitive resistance [7]. b) A human body as 
a conductor comprising five cylinders [7].

Impedance is a function of conductor geometry which, as a 
rule, is assumed to be a cylinder. The bioimpedance assumption 
that a human body is a conductor and consists of five cylinders, 
is shown in the Fig. 1b.

Based on the analysis of the formula, one may assume that 
extremities, because of their size, will have a bigger share in 
the total impedance. Therefore, the total of 80 % of impedance 
consist of lower and upper extremity resistance, which gives 
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30 % after conversion into the total body water. With the use 
of bioimpedance measurement it is difficult to evaluate the total 
amount of water in the trunk (70 % TBW).

MATERIAL AND METHODS

The study was performed among 50 hemodialyzed patients 
and 46 healthy volunteers. Inclusion criteria were the following: 
patients with diagnosed terminal renal insufficiency were 
included in the study, aged between 18 and 80 years, clinically 
stable. Exclusion criteria were the following: mental problems 
that could terminate the study in any way, pregnancy or lactation, 
amputation of a lower limb, implanted pacemaker, severe 
hemostatic circulatory insufficiency. The following parameters 
were measured in each healthy volunteer: body mass (in kg), 
height (in cm), blood pressure, TBW, ECW, ICW. The following 
parameters were measured in each patient: body mass before 
and after hemodialysis (in kg), height of patient (in cm), blood 
pressure before hemodialysis, TBW, ECW, ICW. The body 
mass of a patient was measured with the use of a scale with an 
acceptable deviation of 0.1 kg. The height of a patient (in cm 
without shoes) was measured with the use of a standard measure. 
For bioimpedance measurements a bioimpedance analyzer was 
used (a Xitron Hydra 4200 Bioimpedance spectroscopy device 
measuring at 50 frequencies between 5 kHz and 1 MHz) with 
electrodes (7.7 x 1.9 cm²). All parameters were measured at 
the beginning of hemodialysis (not during it so that errors in 
evaluation were avoided) as the greatest fluid distribution occurs 
within first hour of hemodialysis.

The measurements were performed at the beginning of 
hemodialysis. The measurements before hemodialysis were 
performed within 10 minutes after the moment a patient was lain 
down. Bioimpedance was measured in a logarithmic spectrum 
of 10 frequencies starting from 5 to 500 kHz (analyzer, Xitron 
Hydra 4200 Bioimpedance spectroscopy device) with electrodes 
(7.7 x 1.9 cm2). Two electrodes inducing an alternating current 
were placed dorsally on hand (I1) and ankle (I2) of the same 
body side. The measuring electrodes were placed on the wrist 
(S1) and ankle (S2). A computer was used to collect and store the 
data. Its variables were the following: body mass index (BMI), 
intracellular water (ICW) - water volume inside body cells. (i.e., 
water in the “living” cells), extracellular water (ECW) - water 
volume outside the body cell mass (i.e., water in the “inactive” 
cells), total body water (TBW) - sum of ICW and ECW, ECW_
TBW - ECW divided by TBW, ECW_mass - ECW divided by 
the body mass, height, weight and age.  

Decision tree, a typical data mining (retrieval) method 
is described in an internet medical dictionary as “a graphic 
construct showing available choices at each decision node of 
managing a clinical problem along with probabilities (if known) 
of possible outcomes for patient’s freedom from disability, life 
expectancy, and mortality.” In computer science its properties 
are the following: each internal node tests an attribute (a column 
in the data collection), each branch corresponds to an attribute 
value, each leaf node assigns a classification.

In a more general sense, a classifier is mapping from a (discrete 
or continuous) variable space X to a discrete set of classes denoted 
by labels Y. Learning classifiers are divided into unsupervised 
learning and supervised classifiers. The former need training sets 
labeled by experts in order to obtain knowledge about classes 
e.g. about a patient class. The latter may be able to make the  
proper classification only with the help of raw data and special 

distance measurements between examined patients – points in 
the multivariable space [8]. This space can be visualized in two 
dimensions after the scaling based e.g., on principle component 
analysis (PCA), which transforms real dimensions to artificial 
ones, where the first ones have the most correlations within and 
the rest of dimensions may be omitted with small resulting errors.

A Bayesian network, belief network is a directed acyclic 
probabilistic graphical model that represents a set of random 
variables and their conditional dependencies. For example, a 
Bayesian network could represent the probabilistic relationships 
between diseases and symptoms. For given symptoms such a 
network can be used to compute the probabilities of the presence 
of various diseases.

RESULTS

During the measurements there were sets obtained from 
two groups (healthy volunteers – the control group and 
hemodialyzed patients – the test group). The test group 
consisted of 50 patients and the test group of healthy young 
medical staff (46 people). Raw data were collected by 
medical equipment. Its variables were the following: body 
mass index (BMI) – a ratio of weight to height used as a 
quick measure of health status, BMI values from 18-24.9 
are desirable [kg/m2], intracellular water (ICW) – water 
volume inside the body cells. (i.e., water in the “living” 
cells), extracellular water (ECW) - water volume outside the 
body cell mass (i.e., water in the “inactive” cells), total body 
water (TBW) – sum of ICW and ECW, ECW_TBW – ECW 
divided by TBW, ECW_mass – ECW divided by the body 
mass, height, weight and age.

Standardized (z-score by age and sex), discretized data 
(three levels) and data retrieval results were computed in the 
R language environment  [9] in order to find a simple rule 
for recognizing health problems. Z-score, so called standard 
score, is equal to raw score minus mean of this raw score 
population, the subtraction result divided by its standard 
deviation, used in statistics. All the data, except age, were 
standardized separately for women and men and for age – 
five intervals from infinity to mean plus standard deviation, 
from mean plus standard deviation to mean and so on up to 
minus infinity.

FIGURE 2. Correlation clusters dendrogram of standardized data.

In Fig. 2 all the standardized variable correlation cluster 
dendrogram is depicted. The shorter arms, the stronger 
correlation between joint variables. The separate analyses 
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for control and test group show the similar correlations, so 
in the dendrogram  the data obtained from both groups were 
used. The strongest correlation is between ICW and TBW.  
ECW_TBW has the smallest correlation, the next one is 
ECW_mass together with height. The ‘age’ variable, after 
being standardized, is not strongly correlated with other 
variables.

In next experiments the group marker variable was also 
added: P – for patients, and K – for control group. In the 
search for effective classifiers, several were tested on the 
training set sampled randomly from the original data  without 
replacements, usually 50%. The rest of our data was used for 
testing purposes. 

FIGURE 3 a) Multidimensional scaling of a given population generated 
two k-means clusters (rhombs and circles denotes separated clusters, 
and black, green, red colors – TBW levels: higher, mean, lower); b) An 
exemplary bayesian network calculated for standardized data (TBW is 
the main attribute connected with other attributes).

Based on the PCA k-mean clustering without previous 
training performed on standardized data except sex, group and 
age, the parameters revealed that artificial clusters are connected 
with TBW discretized levels: lower, mean, higher (in Fig. 3a), 
but not with the ECW_TBW distribution. Therefore, further 
experiments with different distance measures and cluster 
methods (e.g., fuzzy, hierarchical, divisive, agglomerative, 
with dissimilarities or raw data) prove that the supervised 
(without training) classification method of calculating patient 
and control group split does not exist and such clusters are 
associated with TBW levels, even after TBW variable’s 
removal from the given data set. The calculated (with the help 
of bnlearn R package) on standardized data Bayesian network 
(in Fig. 3b) confirms this idea: almost all connections go to the 
TBW node. The ‘age’ attribute after score standardizing is not 
connected with others.

The decision tree classifier from Fig.  4a was calculated 
from 6 raw data variables TBW, ECW, ICW, ECW_TBW, 
ECW_mass, BMI with the mentioned grouping marker values 
in the leaves. Attributes were chosen for nodes in this tree by 
J48 algorithm from RWeka library after creating trees from all 
combinations of two, three, four, five, and six input parameters 
and after five construction trials for each combination 
choosing one with the least error mean (constructions on 70% 
of all data sets and testing on 30% of the data – measuring 
the classification error mean). Thus, the tree from  Fig. 4a is 
one of the most efficient tree classifiers tested also on 100% 
population of two sets with only 1 incorrectly classified patient 
and 3 incorrectly classified control group individuals – this 
means that classification error is below 5 %. The node ECW_
TBW is the „must have” node in the majority of generated 

decision trees (especially these generated for the standardized 
data, but unfortunately, with a greater mean classification 
error) despite being not correlated with other variables in the 
control group and the examined group. 

FIGURE 4 a) The best decision tree generated by J48 Rweka procedure on 
raw data. In leaves (6.0/2.0) means 6 individuals and 2 of them incorrectly 
classified. b) ROC curve from the quadratic discriminant analysis classifier 
for standardized data.

So after obtaining a very good decision tree, the next 
learning-based classifiers were tested. The k-nearest 
neighbor and naive Bayes classifiers were not appropriate 
for the given data set, though the naive Bayes for raw data 
were sometimes better than the previous ones.

Finally, linear discriminant analysis classifiers and 
quadratic discriminant analysis classifiers were tested. The 
former has better results for raw data, and the more precise 
latter – for both raw and  standardized data. The former was 
not better than the J48 tree as is proved in the depicted in 
Fig.  4b ROC curve for the quadratic discriminant analysis 
(QDA) classifier. The area under the ROC curve called AUC 
was equal to 0.944. The larger AUC, the better the classifier 
is. After many trials it was verified that single tree classifiers 
can be as good as the QDA classifiers. 

CONCLUSION

The executed experiments affirm possibilities of creating 
good classifiers for detecting a proper patient with the 
help of medical data sets, but only after previous training. 
In the improved test  environment (evaluating decision 
trees generated for all attribute combinations) we obtained 
excellent tree classifiers, even better than QDA classifiers. 
Supervised methods, especially clustering, are not even 
adequate in the case of body water parameters. Maybe for 
larger sets, with a greater number of variables and rows, it 
would be possible. In the near future we are going to measure 
more variables with the help of more sophisticated medical 
equipment and evaluate all possible classifiers once again. 

In this paper we proved that computer science techniques 
can be a great help for medical physicians in: improving 
predictive abilities of different tests and making a better 
differential diagnosis. 
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