The role of the OPRM1 gene polymorphism and its methylation in people in dependence on substances and with different intensity of pain
DOI:
https://doi.org/10.2478/pjph-2022-0005Keywords:
polymorphism OPRM1, opioid receptor, alcohol dependence, analgesia, methylationAbstract
Opioid receptors belong to the group of Gi and Go coupled receptors, inhibiting the activity of the neuron. Opioid receptors regulate reward and aversion. The opioid system contributes to self and species survival by promoting reward elicited by natural stimuli (such as food, sex and social interaction), regulating mood states and facilitating efficient coping with pain and stress. It is suggested that OPRM1 polymorphism is associated with alcohol consumption especially increased in the case of G alleles subjects than A-alleles homozygotes. In several studies, OPRM1 methylation was suspected to be predictive factor of opioid dependence in pain treatment. The relationship of postoperative or preoperative pain with methylation of some CpG sites in the OPRM1 promoter has also been demonstrated. It is known that OPRM1 SNPs provide changes in the structure of the MOR receptor, so by confirming the pharmacogenetic effects of OPRM1 polymorphisms and using these results to guide therapeutic decisions, patients can be prescribed treatment options with the best efficacy and greatest tolerance. Pharmacogenomics of OPRM1 can improve pain management by predicting individual response to pain medications before treatment and facilitate the development of new and more effective pain medications for post-operative pain.
References
1. Toubia T, Khalife T. The endogenous opioid system: Role and dysfunction caused by opioid therapy. Clin Obstet Gynecol. 2019;62(1):3-10.
2. Dhaliwal A, Gupta M. Physiology, opioid receptor. Treasure Island: Stat Pearls Publishing; 2022.
3. Clark MJ, Furman CA, Gilson TD, Traynor JR. Comparison of the relative efficacy and potency of mu-opioid agonists to activate Galpha(i/o) proteins containing a pertussis toxin-insensitive mutation. J Pharmacol Exp Ther. 2006;317(2):858-64.
4. Traynor J. μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend. 2012;121(3):173-80.
5. Welsby PJ, Kellett E, Wilkinson G, Milligan G. Enhanced detection of receptor constitutive activity in the presence of regulators of G protein signaling: applications to the detection and analysis of inverse agonists and low-efficacy partial agonists. Mol Pharmacol. 2002;61(5):1211-21.
6. Melief EJ, Miyatake M, Carroll FI, et al. Duration of action of a broad range of selective κ-opioid receptor antagonists is positively correlated with c- Jun N-terminal kinase-1 activation. Mol Pharmacol. 2011;80(5):920-9.
7. Melief EJ, Miyatake M, Bruchas MR, Chavkin C. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. PNAS. 2010;107(25):11608-13.
8. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptordependent signaling and behavior. Anesthesiology. 2011;115(6):1363-81.
9. Miess E, Gondin AB, Yousuf A, et al. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018;11(539).
10. Cuitavi J, Hipólito L, Canals M. The life cycle of the mu-opioid receptor. Trends Bioch Sci. 2021;46(4):315-28.
11. Just S, Illing S, Trester-Zedlitz M, et al. Differentiation of opioid drug effects by hierarchical multi-site phosphorylation. Mol Pharmacol. 2013;83(3):633-9.
12. Lemos Duarte M, Devi LA. Post-translational modifications of opioid receptors. Trends Neurosci. 2020;43(6):417-32.
13. Williams JT, Ingram SL, Henderson G, et al. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013;65(1):223-54.
14. Tanowitz M, von Zastrow M. A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem. 2003;278(46):45978-86.
15. Siuda ER, Carr R 3rd, Rominger DH, Violin JD. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr Opin Pharmacol. 2017;32:77-84.
16. Piltonen M, Parisien M, Grégoire S, et al. Alternative splicing of the deltaopioid receptor gene suggests existence of new functional isoforms. Mol Neurobiol. 2019;56(4):2855-69.
17. Boparai S, Borelli JL, Partington L, et al. Interaction between the opioid receptor OPRM1 gene and mother-child language style matching prospectively predicts children’s separation anxiety disorder ymptoms. Res Dev Disabil. 2018;82:120-31.
18. Mura E, Govoni S, Racchi M, et al. Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J Pain Res. 2013;6:331-53.
19. Huang P, Chen C, Mague SD, et al. A common single nucleotide polymorphism A118G of the μ opioid receptor alters its N-glycosylation and protein stability. Biochem J. 2012;441(1):379-86.
20. Oertel BG, Doehring A, Roskam B, et al. Genetic-epigenetic interaction modulates μ-opioid receptor regulation. Hum Mol Gen. 2012;21(21):4751- 60.
21. Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci. 2018;19(8):499-514.
22. Yu L. The mu opioid receptor: from molecular cloning to functional studies. Addict Biol. 1996;1(1):19-30.
23. Kranzler HR, Edenberg HJ. Pharmacogenetics of alcohol and alcohol dependence treatment. Curr Pharm Des. 2010;16(19):2141-8.
24. Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. PNAS USA. 1992;89(6):2046-50.
25. Matthes HW, Maldonado R, Simonin F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996;383(6603):819-23.
26. Sora I, Takahashi N, Funada M, et al. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphineinduced analgesia. PNAS USA. 1997;94(4):1544-9.
27. Gianoulakis C. Endogenous opioids and addiction to alcohol and other drugs of abuse. Curr Top Med Chem. 2009;9(11):999-1015.
28. ben Hamida S, Boulos LJ, McNicholas M, et al. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol. 2019;24(1):28-39.
29. Pieters S, van der Zwaluw CS, van der Vorst H, et al. The moderating effect of alcohol-specific parental rule-setting on the relation between the dopamine D2 receptor gene (DRD2), the μ-opioid receptor gene (OPRM1) and alcohol use in young adolescents. Alcohol Alcohol. 2012;47(6):663- 70.
30. Pfeifer P, Sariyar M, Eggermann T, et al. Alcohol consumption in healthy OPRM1 G allele carriers and its association with impulsive behavior. Alcohol Alcohol. 2015;50(4):379-84.
31. Sloan ME, Klepp TD, Gowin JL, et al. The OPRM1 A118G polymorphism: converging evidence against associations with alcohol sensitivity and consumption. Neuropsychopharmacol. 2018;43(7):1530-8.
32. Chung P, Logge WB, Riordan BC, et al. Genetic polymorphisms on OPRM1, DRD2, DRD4, and COMT in young adults: Lack of association with alcohol consumption. Front Psychiatry. 2020;11:549429.
33. Bieńkowski P. Pharmacological features of naltrexone and its use in the treatment of alcohol dependence. Psychiatr Pol. 2013;47(1):117-26.
34. Samochowiec A, Samochowiec J, Pełka-Wysiecka J, et al. The role of OPRM1 polymorphism in the etiology of alcoholism. Adv Clin Exp Med. 2019;28(2):199-202.
35. Benjamin D, Grant ER, Pohorecky LA. Naltrexone reverses ethanol-induced dopamine release in the nucleus accumbens in awake, freely moving rats. Brain Res. 1993;621(1):137-40.
36. Gonzales RA, Weiss F. Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J Neurosci. 1998;18(24):10663-71.
37. Anton RF. Naltrexone for the management of alcohol dependence. NEJM. 2008;359(7):715-21.
38. Middaugh LD, Szumlinski KK, van Patten Y, et al. Chronic ethanol consumption by C57BL/6 mice promotes tolerance to its interoceptive cues and increases extracellular dopamine, an effect blocked by naltrexone. Alcohol Clin Exp Res. 2003;27(12):1892-900.
39. Bouza C, Angeles M, Muñoz A, Amate JM. Efficacy and safety of naltrexone and acamprosate in the treatment of alcohol dependence: a systematic review. Addict. 2004;99(7):811-28.
40. Monterosso JR, Flannery BA, Pettinati HM, et al. Predicting treatment response to naltrexone: the influence of craving and family history. Am J Addict. 2001;10(3):258-68.
41. Rubio G, Ponce G, Rodriguez-Jiménez R, et al. Clinical predictors of response to naltrexone in alcoholic patients: who benefits most from treatment with naltrexone? Alcohol Alcohol. 2005;40(3):227-33.
42. Krishnan-Sarin S, Krystal JH, Shi J, et al. Family history of alcoholism influences naltrexone-induced reduction in alcohol drinking. Biol Psychiatry. 2007;62(6):694-7.
43. Schacht JP, Randall PK, Latham PK, et al. Predictors of naltrexone response in a randomized trial: Reward-related brain activation, OPRM1 genotype, and smoking status. ACNP. 2017;42(13):2640-53.
44. Ziauddeen H, Nestor LJ, Subramaniam N, et al. Opioid antagonists and the A118G polymorphism in the μ-opioid receptor gene: Effects of GSK1521498 and naltrexone in healthy drinkers stratified by OPRM1 genotype. ACNP. 2016;41(11):2647-57.
45. Anton RF, Voronin KE, Book SW, et al. Opioid and dopamine genes interact to predict naltrexone response in a randomized alcohol use disorder clinical trial. Alcoh Clin Exp Res. 2020;44(10):2084-96.
46. Stewart SH, Walitzer KS, Blanco J, et al. Medication-enhanced behavior therapy for alcohol use disorder: Naltrexone, alcoholics anonymous facilitation, and OPRM1 genetic variation. J Subst Abuse Treat. 2019;104:7-14.
47. Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5(7):565-75.
48. Crist RC, Berrettini WH. Pharmacogenetics of OPRM1. Pharmacol Biochem Behav. 2014;123:25-33.
49. Palada V, Kaunisto MA, Kalso E. Genetics and genomics in postoperative pain and analgesia. Curr Opin Anaesthesiol. 2018;31(5):569-74.
50. Khalil H, Sereika SM, Dai F, et al. OPRM1 and COMT gene-gene interaction is associated with postoperative pain and opioid consumption after orthopedic trauma. Biol Res Nurs. 2017;19(2):170-9.
51. 51. Olesen AE, Nielsen LM, Feddersen S, et al. Association between genetic polymorphisms and pain sensitivity in patients with hip osteoarthritis. Pain Pract. 2018;18(5):587-96.
52. Matic M, de Hoogd S, de Wildt SN, et al. OPRM1 and COMT polymorphisms: implications on postoperative acute, chronic and experimental pain after cardiac surgery. Pharmacogenomics. 2020;21(3):181-93.
53. Wang L, Wei C, Xiao F, et al. Influences of COMT rs4680 and OPRM1 rs1799971 polymorphisms on chronic postsurgical pain, acute pain, and analgesic consumption after elective cesarean delivery. Clin J Pain. 2019;35(1):31-6.
54. Karataş E, Kahraman ÇY, Akbıyık N. Association between polymorphisms in catechol-O-methyl transferase, opioid receptor Mu 1 and serotonin receptor genes with postoperative pain following root canal treatment. Int Endod J. 2021;54(7):1016-25.
55. Lie MU, Winsvold B, Gjerstad J, et al. The association between selected genetic variants and individual differences in experimental pain. S J Pain. 2021;21(1):163-73.
56. 56. Leźnicka K, Kurzawski M, Cięszczyk P, et al. Polymorphisms of catechol- O-methyltransferase (COMT rs4680:G>A) and μ-opioid receptor (OPRM1 rs1799971:A>G) in relation to pain perception in combat athletes. Biology of Sport. 2017;34(3):295-301.
57. Wang GJ, Chang L, Volkow ND, et al. Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain J Neurology. 2004;127(Pt 11):2452-8.
58. Grzywacz A, Chmielowiec K, Boroń A, et al. Influence of DAT1 promotor methylation on sports performance. Genes. 2021;12(9):1425.
59. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Develop. 2011;25(10):1010-22.
60. Hwang CK, Song KY, Kim CS, et al. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol. 2007;27(13):4720-36.
61. Hwang CK, Song KY, Kim CS, et al. Epigenetic programming of muopioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med. 2009;13(9B):3591-615.
62. Wei LN, Loh HH. Transcriptional and epigenetic regulation of opioid receptor genes: present and future. Ann Rev Pharmacol Toxicol. 2011;51:75-97.
63. Lin YC, Flock KE, Cook RJ, Hunkele AJ, Loh HH, Ko JL. Effects of trichostatin A on neuronal mu-opioid receptor gene expression. Brain Res. 2008;1246:1-10.
64. Sun N, Yu L, Gao Y, et al. MeCP2 epigenetic silencing of Oprm1 gene in primary sensory neurons under neuropathic pain conditions. Front Neurosci. 2021;15:743207.
65. Chidambaran V, Zhang X, Martin LJ, et al. DNA methylation at the mu-1 opioid receptor gene (OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion. Pharmacogenomics Pers Med. 2017;10:157-68.
66. Sun Y, Sahbaie P, Liang D, et al. DNA methylation modulates nociceptive sensitization after incision. PloS one. 2015;10(11):e0142046.
67. Sandoval-Sierra JV, Salgado García FI, Brooks JH, et al. Effect of shortterm prescription opioids on DNA methylation of the OPRM1 promoter. Clin Epigenetics. 2020;12(1):76.
68. Ebrahimi G, Asadikaram G, Akbari H, et al. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. Am J Drug Alcohol Abuse. 2018;44(2):193-9.
69. Viet CT, Dang D, Aouizerat BE, et al. OPRM1 methylation contributes to opioid tolerance in cancer patients. J Pain. 2017;18(9):1046-59.
70. Zhang H, Herman AI, Kranzler HR, et al. Hypermethylation of OPRM1 promoter region in European Americans with alcohol dependence. J Hum Gen. 2012;57(10):670-5.
71. Lin Y, Kranzler HR, Farrer LA, et al. An analysis of the effect of muopioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. Pharmacogn J. 2020;20(5):672-80.
72. Wachman EM, Hayes MJ, Lester BM, et al. Epigenetic variation in the mu-opioid receptor gene in infants with neonatal abstinence syndrome. J Pediatr. 2014;165(3):472-8.
73. Wachman EM, Hayes MJ, Shrestha H, et al. Epigenetic variation in OPRM1 gene in opioid-exposed mother-infant dyads. Genes Brain Behav. 2018;17(7):e12476.
74. Wachman EM, Wang A, Isley BC, et al. Placental OPRM1 DNA methylation and associations with neonatal opioid withdrawal syndrome, a pilot study. Explor Med. 2020;1(3):124-35.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.