Anticancer properties of selected plant polyphenols from the group of flavonoids and stilbenes
DOI:
https://doi.org/10.12923/j.0044-2011/122-4/a.19Keywords:
plant bioactive polyphenols, flavonoids, stilbens, epigallocatechin-3-gallate, genistein, resveratrol, expression of suppressor genesAbstract
During recent 10 years, numerous biological, clinical and epidemiological studies have been aimed at explaining the health-related role of natural plant polyphenols (i.e. flavonoids and stilbens) in human health. The consequences of some polyphenols effects are effective protection and reduction of the risk of many disorders (e.g. cardiovascular, neurodegenerative and cancer diseases) which were initiated by reactive free radicals. The polyphenols action results from their antioxidant activity leading to decrease in the level of reactive oxygen species and reactive carcinogenic metabolites.
The studies of several scientific groups and of our team indicate that natural plant flavonoids and stilbens contained in vegetables, fruits and herbs modulate, by epigenetic mechanism, expression of tumour suppressor genes, encoding proteins that participate in regulation of intracellular signal pathways, inhibition of cell cycle and/or in stimulation of proapoptotic genes. Thus, natural bioactive compounds which inhibit cancer cell growth, invasive capacities, and metastases can be efficacious in both cancer therapy, cancer prevention and stimulation of the anticancer drugs effects.
The present article includes scientific knowledge about sources of the plant flavonoids and stilbens, their chemical structure, bioavaibility and anitioxidant properties. There are also explained the compounds epigenetical mechanism of the anticancer actions.
References
1. Rice-Evans CA, Miller NJ, Papania G. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20:933-56.
2. Manach C, Scalbert A, Morand C i wsp. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727-47.
3. Gawęcki J, Hryniewiecki L. Żywienie człowieka. Podstawy nauki o żywieniu. Warszawa: PWN; 2006.
4. Lotito SB, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans; cause, consequence, or epiphenomenon? Free Radic Biol Med. 2006;41:1727-46.
5. Majewska M, Czeczot H. Flawonoidy w profilaktyce i terapii. Terapia i Leki. 2009;65:369-77.
6. Walle T, Hsieh F, Delegge MK i wsp. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004;32:1377-82.
7. Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2005;49:472-81.
8. Stojanovic S, Sprinz H, Brede O. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch Biochem Biophys. 2001;391:79-89.
9. Krajka-Kuźniak V. Indukcja enzymów II fazy jako strategia chemioprewencji nowotworów i innych schorzeń degeneracyjnych. Postępy Hig Med Dosw. 2007;61:627-38.
10. Yang SH, Kim JS, Oh TJ. Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray. Int J Oncol. 2003;22:741-50.
11. Moon YJ, Wang X, Moris ME. Dietary flovonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro. 2006;20:187-210.
12. Stefanska B, Karlic H, Varga F i wsp. Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention. Br J Pharmacol. 2012;167:279-97.
13. Fang MZ, Chen D, Sun Y i wsp. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005;11:7033-41.
14. Wang LS, Arnold M, Huang YW i wsp. Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black respberries: a phase I pilot study. Clin Cancer Res. 2011;17:598-610.
15. Mandal S, Davie JR. Estrogen regulated expression of the p21Waf1/Cip1 gene in estrogen receptor positive human breast cancer cells. J Cell Physiol. 2010;224:28-32.
16. Pozo-Guisado E, Lorenzo-Benayas MJ, Fernandez-Salgquero PM. Resveratrol modules the phosphoinisitide 3-kinase pathway through an estrogen receptor alpha-dependent mechanism: relevance in cell proliferation. Int J Cancer. 2004;109:167-73.
17. Ullah MF, Khan MW. Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pacific J Cancer Orevention. 2008;9:187-96.
18. Su Y, Simmen FA, Xiao R, Simmen RC. Expression profiling of rat mammary epithelial cells reveals cancidate signaling pathways in dietary protection from mammary tumors. Physiol Genomics. 2007;30:8-16.
19. Stefanska B, Salami P, Bednarek A, Fabianowska-Majewska K. Comparative effects of retinoic acids, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. Eur J Nutr. 2012;107:781-90.
20. Stefańska B, Rudnicka K, Bednarek A, Fabianowska-Majewska K. Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol. 2010;638:47-53.
21. Chuang LS, Ian HI, Koh TW i wsp. Human DNA-(cytosine-5) methyl-transferase-PCNA complex as a target for p21WAF1. Science. 1997;277:996-2000.
22. Privat M, Aubel C, Arnould S i wsp. AKT and p21WAF1/CIP1 as potential genistein targets in BRCA1-mutant human breast cancer cell lines. Anticancer Res. 2010;30:2049-54.
23. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137:223S-8S.
24. Attoub S, Hassan AH, Vanhoecke B i wsp. Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur J Pharmacol. 2011;65:18-25.
25. Weil A. Jak się zdrowo zestarzeć. Poradnik na całe życie. Warszawa: PIW; 2008.