Hydroxyapatite biomaterials for a filling of bone defects
DOI:
https://doi.org/10.12923/Abstract
Calcium phosphate ceramic materials such as hydroxyapatite HAp (Ca10(PO4)6(OH)2) are used for skeletal tissue engineering because of their biocompatibility and osteoconductive properties. The interconnected porous structure, good mechanical properties, biocompatibility of biodegradable composite provide a suitable microenvironment to promote osteoblast proliferation and osteogenesis. Culturing of osteogenic cells on a porous HAp scaffold offers a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. These scaffolds could be designed as a perfectly fit replacements to reconstruct the patient's skeleton. Before their use as bone replacement, HAp and its composites should be tested in vivo and in vitro. Microarray is a tool for gene expresion analysis of human osteoblasts in response to HAp biomaterials. By using bioactive ceramic materials that mimic the mineral composition of natural bones, the stimulation of a gene expression which is involved in the commitment of MPCs to osteoblasts was noted by microarray technology. Among up-regulated eleven genes were the genes encoding SOX9 (transcription factor SOX-9) and ERK (extracellular-signal-regulated protein kinases).
References
1. Baran E.T., Tuzlakoglu K., Salgado A.J. et al.: Multichannel mould processing of 3D structures frommicroporous coralline hydroxyapatite granules and chitosan support materials for guided tissue regeneration/engineering. J. Mater. Sci. Mater. Med., 15, 161, 2004.
2. Belcarz A., Ginalska G., Zalewska J. et al.: Covalent coating of hydroxyapatite by keratin stabilizes. J. Biomed. Mater. Res. Part B: Applied Biomaterials, 89B, 102, 2009.
3. Belcarz A., Ginalska G., Zima A.: New HAp-organic composite as apromising filler of bone defects. Engineering of Biomaterials, 88, 14, 2009.
4. Bignon A., Chouteau J., Chevalier J. et al.: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J. Mater. Sci. Mater. Med., 14, 1089, 2003.
5. Bombonato-Prado K.F., Bellesini L.S., Junta C.M. et al.: Microarray-based gene expression analysis of human osteoblasts in response to different biomaterials. J. Biomed. Mater. Res. A., 88, 401, 2009.
6. Burmeister B., Domaschke H., Gelinsk M. et al.: Co-culture of osteoblast and osteoclasts on restorable mineralized collagen scaffolds: establishment of an in vitro model of bone remodeling. European Cells and Materials, 5, 18, 2003.
7. Charles L.F., Shaw M.T., Olson J.R. et al.: Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci Mater. Med., 18, 2010.
8. Chen W., Liu Y., Courtney H.S., Bettenga M. et al.: In vitro antibacterial properties of magnetron co-sputtered-containing hydroxyapatite coating. Biomaterials, 27, 5512, 2006.
9. Darouiche Ro.: Anti-infective efficacy of silver-coated medical prostheses. Clin. Infect. Dis., 29, 1371, 1999.
10. Dorozhin S.V.: Bioceramics of calcium orthophosphates. Biomaterials, 31, 465, 2010.
11. Fritsch A., Hellmich C., Dormieux L.: The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials. Philos Transact A Math. Phys. Eng. Sci., 28, 1913, 2010.
12. Hanagata N., Takemura T., Monkawa A. et al.: Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. J. Biomed. Mater. Res A., 83, 362, 2007.
13. Hing K.A., Annaz B., Saeed S. et al.: Microporosity enhances bioactivity of synthetic bone graft substitutes. J. Mater. Sci Mater. Med., 16, 467, 2005.
14. Ishaug S.L., Crane G.M., Miller M.J. et al.: Bone formation by three dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res., 36, 17, 1997.
15. Kim B.S., Putnam A.J., Kulik T.J. et al.: Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol. Bioeng., 57, 46, 1998.
16. Kim C.S., Sohn S.H., Jeon S.K. et al.: Effect of various implant coatings on biological responses in MG63 using cDNA microarray. J. Oral. Rehabil., 33, 368, 2006.
17. Lee K.W., Wang S., Yaszemski M.J. et al.: Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials, 29, 2839, 2008.
18. Le Nihouannen D., Saffarzadeh A., Aguado E. et al.: Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites. J. Mater. Sci: Mater. Med., 18, 225, 2007.
19. Liuyun J., Yubao L., Chengdong X.: Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 14, 16, 2009.
20. Mygind T., Stiehler M., Baatrup A. et al.: Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds., Biomaterials, 28, 1036, 2007.
21. Ong J.L., Bessho K., Cavin R. et al.: Bone response to radio frequency sputtered calcium phosphate implants and titanium implants in vivo. J. Biomed. Mater. Res., 59, 184, 2002.
22. Peter X. Ma.: Scaffold for tissue fabrication. Materials Today, 7, 30, 2004.
23. Porter A.E., Botelho C.M., Lopes M.A. et al.: Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J. Biomed. Mater. Res., A69, 670, 2004.
24. Qi H., Aguiar D.J., Williams S.M., La Pean A. et al.: Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proc. Natl. Acad. Sci. U S A., 100, 3305, 2003.
25. Roveri N., Falini M.C., Sidoti A. et al.: Biologically inspired groth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Materials Science and Engineering, 23, 441, 2003.
26. Saju K.K., Reshmi R., Jayadas N.H. et al.: Polycrystalline coating of hydroxyapatite on TiAl6V4 implant material grown at lower substrate temperatures by hydrothermal annealing after pulsed laser deposition. Proc. Inst. Mech. Eng. H., 223, 1049, 2009.
27. Seebach C., Schultheiss J., Wilhelm K. et al.: Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. doi: 10.10161, injury.2010.02.017.
28. Sivakumar M., Rao K.P.: Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres. J. Biomed. Mater. Res. A., 65, 222, 2003.
29. Song J.H., Kim J.H., Park S. et al.: Signaling responses of osteoblast cells to hydroxyapatite: the activation of ERK and SOX9. J. Bone Miner. Metab., 26, 138, 2008.
30. Teixeira S., Fernandes H., Leusink A. et al.: In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A. 93A, 567, 2009.
31. Timothy D., Pamula E., Hauk D. et al.: Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. J. Mater. Sci. Mater. Med., 20, 1909, 2009.
32. Tu X.L., Liu H.W., Iwai Y. et al.: Ultrastrtctural observation of bone marrow stromal cells cultured in coralline hydroxyapatite, Nan Fang Yi Ke Da Xue Xue Bao., 27, 705, 2007.
33. Venugopal J., Prabhakaran MP., Zhang Y. et al.: Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Transact A Math. Phys. Eng. Sci., 368, 2065, 2010.
34. Wang F., Dennis J.E., Awadallah A. et al.: Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging Physiol. Genomics, 37, 23, 2009.
35. Warnke P.H., Seitz H., Warnke F. et al.: Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations. J. Biomed. Mater. Res. B. Appl. Biomater., 93, 212, 2010.
Downloads
Published
Issue
Section
License
Copyright (c) 2010 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.