Effect of osthole on the protective activity of carbamazepine and phenobarbital against maximal electroshock-induced seizures in mice

Authors

  • Jarogniew J. Łuszczki Department of Pathophysiology, Medical University of Lublin, Poland, Isobolographis Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Poland Author https://orcid.org/0000-0002-3059-0393
  • Lech P. Mazurkiewicz Department of Pathophysiology, Medical University of Lublin, Poland Author
  • Anna Rękas Department of Pathophysiology, Medical University of Lublin, Poland Author
  • Michał Gleńsk Department of Pharmacognosy, Wroclaw Medical University, Wroclaw, Poland Author https://orcid.org/0000-0002-3731-4631
  • Grażyna Ossowska Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Poland Author https://orcid.org/0000-0003-0858-4250

DOI:

https://doi.org/10.12923/

Keywords:

Osthole, carbamazepine, phenobarbital, maximal electroshock seizure test

Abstract

The aim of this study was to determine the effect of osthole on the anticonvulsant activity of two classical antiepileptic drugs (carbamazepine and phenobarbital) in the mouse maximal electroshock seizure model. Electroconvulsions were evoked in adult Albino Swiss mice by a current (50Hz, 500V, 0.2s stimulus duration) delivered via auricular electrodes. Acute adverse-effect profiles of the combination of osthole with carbamazepine and phenobarbital were measured in the chimney test (motor performance), passive avoidance task (long-term memory) and grip-strength test (skeletal muscular strength) in mice. Results indicate that osthole administered intraperitoneally (i.p.) at a dose of 200 mg/kg significantly elevated (by 41%; p<0.01) the threshold for electroconvulsions in mice. Osthole at lower doses of 50, 100 and 150 mg/kg had no significant impact on the threshold for electroconvulsions in mice. Osthole (50, 100 and 150 mg/kg, i.p.) did not significantly affect the protective action of carbamazepine and phenobarbital in the maximal electroshock-induced seizures in mice. Moreover, osthole in combination with carbamazepine and phenobarbital did not alter motor performance, long-term memory or skeletal muscular strength in experimental animals. The present study demonstrates that osthole, although elevated the threshold for electroconvulsions, had no significant effect on the anticonvulsant action of carbamazepine and phenobarbital in the mouse maximal electroshock-induced seizure model.

References

1. Boissier J.R., Tardy J., Diverres, J.C.: Une nouvelle méthode simple pour explorer l’action tranquilisante: le test de la cheminée. (in French) Med. Exp. (Basel) 3, 81, 1960.

2. Chen J., Chiou W.F., Chen C.C. et al.: Effect of the plant-extract osthole on the relaxation of rabbit corpus cavernosum tissue in vitro. J. Urol. 163, 1975, 2000.

3. Chiou W.F., Huang Y.L., Chen C.F. et al.: Vasorelaxing effect of coumarins from Cnidium monnieri on rabbit corpus cavernosum. Planta Med. 67, 282, 2001.

4. Chiu P.R., Lee W.T., Chu Y.T. et al.: Effect of the Chinese herb extract osthol on IL-4-induced eotaxin expression in BEAS-2B cells, Pediatr. Neonatol. 49, 135, 2008.

5. Chou S.Y., Hsu C.S., Wang K.T. et al.: Antitumor effects of osthol from Cnidium monnieri: an in vitro and in vivo study. Phytother. Res. 21, 226, 2007.

6. Cisowski W., Sawicka U., Mardarowicz M. et al.: Essential oil from herb and rhizome of Peucedanum ostruthium (L. Koch.) ex DC. Z. Naturforsch. [C] 56, 930, 2001.

7. Guh J.H., Yu S.M., Ko F.N. et al.: Antiproliferative effect in rat vascular smooth muscle cells by osthole, isolated from Angelica pubescens. Eur. J. Pharmacol. 298, 191, 1996.

8. Ko F.N., Wu T.S., Liou M.J. et al.: Inhibition of platelet thromboxane formation and phosphoinositides breakdown by osthole from Angelica pubescens. Thromb. Haemost. 62, 996, 1989.

9. Kuo P.L., Hsu Y.L., Chang C.H. et al.: Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells, J. Pharmacol. Exp. Ther. 314, 1290, 2005.

10. Li X.X., Hara I., Matsumiya T.: Effects of osthole on postmenopausal osteoporosis using ovariectomized rats; comparison to the effects of estradiol. Biol. Pharm. Bull. 25, 738, 2002.

11. Liang H.J., Suk F.M., Wang C.K. et al.: Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice, Chem. Biol. Interact. 181, 309, 2009.

12. Litchfield J.T., Wilcoxon F.: A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 96, 99, 1949.

13. Löscher W., Fassbender C.P., Nolting B.: The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res. 8, 79, 1991.

14. Łuszczki J.J., Antkiewicz-Michaluk L., Czuczwar S.J.: Isobolographic analysis of interactions between 1-methyl-1,2,3,4-tetrahydroisoquinoline and four conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Eur. J. Pharmacol. 602, 298, 2009.

15. Łuszczki J.J., Czuczwar S.J.: Effect of WIN 55,212-2 mesylate - a highly potent cannabinoid CB1 and CB2 receptor agonist on the protective action of carbamazepine, phenytoin, phenobarbital and valproate in the mouse maximal electroshock-induced seizure model. Epilepsia 50(suppl. 11), 365, 2009.

16. Łuszczki J.J., Głowniak K., Czuczwar S.J.: Imperatorin enhances the protective activity of conventional antiepileptic drugs against maximal electroshock-induced seizures in mice. Eur. J. Pharmacol. 574, 133, 2007.

17. Łuszczki J.J., Głowniak K., Czuczwar S.J.: Time-course and dose-response relationships of imperatorin in the mouse maximal electroshock seizure threshold model. Neurosci. Res. 59, 18, 2007.

18. Łuszczki J.J., Świąder M., Czuczwar M. et al.: Interactions of tiagabine with some antiepileptics in the maximal electroshock in mice. Pharmacol. Biochem. Behav. 75, 319, 2003.

19. Łuszczki J.J., Wójcik-Ćwikła J., Andres, M.M. et al.: Pharmacological and behavioral characteristics of interactions between vigabatrin and classical antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology 30, 958, 2005.

20. Łuszczki J.J., Wojda E., Andres-Mach M. et al.: Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study. Epilepsy Res. 85, 293, 2009.

21. Łuszczki J.J., Wojda E., Raszewski G. et al.: Influence of imperatorin on the anticonvulsant activity and acute adverse-effect profile of lamotrigine in maximal electroshock-induced seizures and chimney test in mice. Pharmacol. Rep. 60, 566, 2008.

22. Matsuda H., Tomohiro N., Ido Y. et al.: Anti-allergic effects of Cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol. Pharm. Bull. 25, 809, 2002.

23. Meyer O.A., Tilson H.A., Byrd W.C. et al.: A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav. Toxicol. 1, 233, 1979.

24. Murray R.D.H., Mendez J., Brown S.A.: The Natural Coumarins: Occurrence, Chemistry and Biochemistry, Wiley, New York, NY, 1982.

25. Nakamura T., Kodama N., Arai Y. et al.: Inhibitory effect of oxycoumarins isolated from the Thai medicinal plant Clausena guillauminii on the inflammation mediators, Inos, TNF-alpha, and COX-2 expression in mouse macrophage RAW 264.7. J. Nat. Med. 63, 21, 2009.

26. Okamoto T., Kawasaki T., Hino O.: Osthole prevents anti-Fas antibody-induced hepatitis in mice by affecting the caspase-3-mediated apoptotic pathway, Biochem. Pharmacol. 65, 677, 2003.

27. Song F., Xie M.L., Zhu L.J. et al.: Experimental study of osthole on treatment of hyperlipidemic and alcoholic fatty liver in animals, World J. Gastroenterol. 12, 4359, 2006.

28. Teng C.M., Lin C.H., Ko F.N. et al.: The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn Schmiedebergs Arch. Pharmacol. 349, 202, 1994.

29. Venault P., Chapouthier G., de Carvalho L.P. et al.: Benzodiazepine impairs and beta-carboline enhances performance in learning and memory tasks. Nature 321, 864, 1986.

30. Wang S.H., An F., Zhang D.S.: Study on antioxidation of osthole. Trad. Pat. Med. 26, 1062, 2004.

31. Wang S.J., Lin T.Y., Lu C.W.: Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals, Neurochem. Int. 53, 416, 2008.

32. Zadrożniak A., Wojda E., Wlaź A. et al.: Characterization of acute adverse-effect profiles of selected antiepileptic drugs in the grip-strength test in mice. Pharmacol. Rep., 61, 737, 2009.

33. Zhang Q., Qin L., He W. et al.: Coumarins from Cnidium monnieri and their antiosteoporotic activity. Planta Med. 73, 13, 2007.

34. Zhang Y., Xie M.L., Xue J. et al.: Osthole regulates enzyme protein expression of CYP7A1 and DGAT2 via activation of PPARalpha/gamma in fat milk-induced fatty liver rats. J. Asian Nat. Prod. Res. 10, 807, 2008.

35. Zhou J., Cheng W.X., Xu Y.H.: Experimental study on anti-tumour effect of osthole extracted from the fruits of Cnidium monnieri (L.) Cusson. Zhejiang J. Integr. Tradit. Chin. West. Med. 12, 76, 2002.

Downloads

Published

2010-09-30