Changes in the content and chemical composition of sweet basil essential oil under the influence of fertilization of plants with nitrogen and potassium
DOI:
https://doi.org/10.12923/Keywords:
Ocimum basilicum L., rate of nitrogen and potassium, linalool, eugenol, 1,8-cineoleAbstract
Sweet basil (Ocimum basilicum L.) belongs to valuable and extremely popular oil plants that are widely used in the pharmaceutical, cosmetics, perfume, and food industries. The essential oil extracted from the basil herb is characterized by a rich and varied chemical composition. The aim of the present study was to investigate the effect of different nitrogen rates (0.2, 0.4, 0.6, and 0.8g dm-3) and potassium rates (0.4 and 0.8g dm-3) on the content and chemical composition of essential oil obtained from the sweet basil herb. The investigated essential oil of sweet basil was characterized by a rich chemical composition and its dominant compound was linalool. Varied nitrogen and potassium fertilization of the plants contributed to an increase in the quality of the oil extracted from the dried herb. Increasing nitrogen and potassium rates resulted in an increased accumulation of essential oil in the basil herb as well as in a rise in the concentration of methyl eugenol (nitrogen), linalool (partly nitrogen and potassium), 1,8-cineole, and eugenol (potassium). In turn, a reduction in the amount of nitrogen contributed to a decrease in the content of 1,8-cineole, eugenol, and methyl chavicol, while a reduction in the rate of potassium resulted in a clear decline in the concentration of methyl chavicol and methyl eugenol.
References
1. Adams R.P.: Identification of essential oil compounds by gas chromatography/Quadrupole mass spectroscopy. Allured: Carol Stream, IL 2001.
2. Ali S.M., Khan A.A., Ahmed I., Musaddiq M., Ahmed K.S., Polasa H., Rao L.V., Habibullah C.M., Sechi L.A., Ahmed N.: Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clinic Microb. Antimicrob., 2005, 4, 20, doi: 10.1186/1476-0711-4-20.
3. Arabaci O., Bayram E.: The effect of nitrogen fertilization and different plant densities on some agronomic and technologic characteristic of Ocimum basilicum L. (Basil). J. Agron., 3 (4), 255, 2004.
4. Benedec D., Oniga I., Oprean R., Tamas M.: Chemical composition of the essential oil from Ocimum basilicum L. cultivated in Romania. Farmacia, 57 (5), 625, 2009.
5. Biesiada A., Kuś A.: The effect of nitrogen fertilization and irrigation on yielding and nutritional status of sweet basil (Ocimum basilicum L.). Acta Sci. Pol. Hortorum Cultus, 9 (2), 3, 2010
6. Britto D.T., Kronzucker H.J.: Celluar mechanisms of potassium transport in plants. Physiol. Plant., 133 (4), 637, 2008.
7. Castro L.W.P., Deschamps C., Biasi L.A. et al.: Development and essential oil yield and composition of mint chemotypes under nitrogen fertilization and radiation levels. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1-6 August 2010, Brisbane, Australia, 13-15, Pub. On DVD.
8. Chatzopoulou P.S., Koutsos T.V., Katsiotis S.T.: Study of nitrogen fertilization rate on fennel cultivars for essential oil yield and composition. J. Vegetable Sci., 12, 2, 85, 2006.
9. Crawford N.M., Glass D.M.: Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Sci., 3 (10), 389, 1998.
10. Daneshian A., Gurbuz B., Cosge B., Ipek A.: Chemical components of essential oils from basil (Ocimum basilicum L.) grown at different nitrogen levels. Internat. J. Nat. Engin. Sci., 3 (3), 8, 2009.
11. Golcz A., Politycka B., Seidler-Łożykowska K.: The effect of nitrogen fertilization and stage of plant development on the mass and quality of sweet basil leaves (Ocimum basilicum L.). Herba Pol., 52 (1/2), 22, 2006.
12. Grayer R.J., Kite G.C., Goldstone F.J. et al.: Infraspecific taxonomy and essential oil chemotypes in sweet basil (Ocimum basilicum). Phytochem., 43(5), 1033, 1996.
13. Ismail M.: Central Properties and Chemical Composition of Ocimum basilicum essential oil. Pharm. Biol., 44(8), 619, 2006.
14. Jabbari R., Dehaghi M.A., Sanavi M.M., Agahi K.: Nitrogen and iron fertilization methods affecting essential oil and chemical composition of thyme (Thymus vulgaris L.) medical plant. Advances in Environ. Biol., 5 (2), 433, 2011.
15. Juliani H.R., Simon J.E.: Antioxidant activity of basil. In: Janick J., Whipkey A. (eds.), Trends in new crops and new uses. ASHS Press, Alexandria, VA, 2002.
16. Kaledin V.I., Pakharukova M.Y., Pivovarova E.N. et al.: Correlation between hepatocarcinogenic effect of etragole and its influence on glucocorticoid induction of liver-specific enzymes and activities of FOXA and HNF4 transcription factors in mouse and rat liver. Biochem. (Moscow), 74, 4, 377, 2009.
17. Kandeel A.M., Naglaa S.A.T., Sadek A.A.: Effect of biofertilizers on the growth, volatile oil yield and chemical composition of Ocimum basilicum L. plant. Ann. Agr. Sci. Cairo, 1, 351, 2004.
18. Kandil M.A.M., Khatab M.E., Ahmed S.S., Schnug E.: Herbal and essential oil yield of Genovese basil (Ocimum basilicum L.) grown with mineral and organic fertilizer sources in Egypt. J. Kulturpflanz., 61 (12), 443, 2009.
19. Krüger H., Wetzel S.B., Zeiger B.: The chemical variability of Ocimum species. J. Herbs Spices &Med. Plants, 9 (1), 335, 2002.
20. Labra M., Miele M., Ledda B., Grassi F., Mazzei M., Sala F.: Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci., 167, 725, 2004.
21. Lawrence B.M.: Essential oils: from agriculture to chemistry. Internat. J. Aromather., 10, 3/4, 2001.
22. Lewinsohn E., Ziv-Raz I., Dudai N. et al.: Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L.). developmental and chemotypic association of allylphenol O-methyltransferase activities. Plant Sci., 160, 27, 2000.
23. Magalhães C.B., Riva D.R., DePaula L.J. et al.: In vivo anti-inflammatory action of eugenol on lipopolysaccaride-induced lung injury. J. Appl. Physiol., 108, 845, 2010.
24. Manitto P., Gramatica P., Monti D.: Biosynthesis of phenylopropanoid compounds. Part II. Incorporation of specifically labelled cinnamic acids into eugenol. J. Chem. Soc. Perkin I, 1548, 1975.
25. Manitto P., Monti D., Gramatica P.: Biosynthesis of phenylopropanoid compounds. Part. I. Biosynthesis of eugenol in Ocimum basilicum. J. Chem. Soc. Perkin I, 1727, 1974.
26. Mass Spectral Library, NIST/EPA/NIH:USA, 2008.
27. Meneghini A., Pocceschi N., Venanzi G., Tomaselli P.B.: Effect of nitrogen fertilization on photosynthetic rate, nitrogenous metabolites and β-asarone accumulation in triploid Acorus calamus L. leaves. Flavour Fragr. J., 13, 319, 1998.
28. Ogata M., Hoshi M., Urano S., Endo T.: Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem. Pharm. Bull., 48, 10, 1467, 2000.
29. Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-1,2-dimethoxybenzene). European Commission Health & Consumer Protection Directorate-General, Scientific Committee on Food, SCF/CS/FLAVOUR/4 ADD1 FINAL, 2001.
30. Özek T., Tabanca N., Demirci F. et al.: Enantiomeric distribution of some linalool containing essential oils and their biological activities. Rec. Nat. Prod., 4 (4), 180, 2010.
31. Polish Pharmacopoeia VIII, Warsaw, 2008.
32. Rao E.V.S.P., Puttana K., Ganesha R.S., Ramesh S.: Nitrogen and potassium nutrition of French basil (Ocimum basilicum Linn.). J. Spices Aromat. Crops, 16 (2), 99, 2007.
33. Røstelien T., Borg-Karlson A.K., Fäldt J. et al.: The plant sesquiterpene germacrene D specifically activates a major type of antennal receptor neuron of the tobacco budworm moth Heliothis virescens. Chem. Senses, 25, 141, 2000.
34. Sala A., Racio M.C., Giner R.M. et al.: Anti-phospholipase A2 and anti-inflammatory activity of Santolina chamaecyparissus. Life Sci., 66 (2), 35, 2000.
35. Sarab D., Naghdi Badi H., Nasri M., Makkizadeh M., Midi H.: Changes in essential oil content and yield of basil in response to different levels of nitrogen and plant density. J. Med. Plants, 7 (27), 60, 2008.
36. Seidler-Łożykowska K., Król D.: The content of essential oil in ten sweet basil (Ocimum basilicum L.) cultivars and its composition. Herba Pol., 54 (3), 7, 2008.
37. Sifola M.I., Barbieri G.: Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hort., 108, 408, 2006.
38. Tomar U.S., Daniel V., Shrivastava K. et al.: Comparative evaluation and antimicrobial activity of Ocimum basilicum Linn. (Labiatae). J. Global Pharma. Technol., 2 (5), 49, 2010.
39. Vieira R.F., Simon J.E.: Chemical characterization of basil (Ocimum spp.) based on volatile oils. Flavour Fragr. J., 21, 214, 2006.
40. Viña A., Murillo E.: Essential oil composition from twelve varieties of basil (Ocimum spp.) grown in Colombia. J. Braz. Chem. Soc., 14, 5, 744, 2003.
41. Zheljazkov V.D., Cantrell C.L., Ebelhar M.W. et al.: Productivity, oil content, and oil composition of sweet basil as a function of nitrogen and sulfur fertilization. HortSci., 43 (5), 1415, 2008.
Downloads
Published
Issue
Section
License
Copyright (c) 2011 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.