A study on design, virtual screening, and docking analysis of new ferulic acid analogs against the NF-kB therapeutic target
DOI:
https://doi.org/10.12923/cipms-2025-0016Keywords:
ferulic acid, NF-κB, docking, cancer, diabetes, inflammationsAbstract
The human transcription factor NF-κB has an essential role in inflammatory responses and carcinogenesis. Ferulic acid (FA) is one of the plant phenolic compounds that shows therapeutic potential for anticancer, anti-diabetes, anti-aging, anti-inflammatory activities, etc. This study aims to develop novel FA-based NF-κB inhibitors. The docking study of FA analogs has revealed that FA74 (-7.3 kcal/mol), FA75 (-7.2 kcal/mol), and FA71 (-7.1 kcal/mol) are top NF-κB binders, in comparison with their parental compound,
FA (-4.0 kcal/mol). Accordingly, FA74 establishes four hydrogen bonds with Arg 246 (p65), Gln 606 (p50), and Ser 546 (p50); FA75 and FA71 form three hydrogen bonds with Lys 541 (p50), Arg 246 (p65), and four hydrogen bonds with Arg 246 (p65), Lys 541
(p50), Ser 546 (p50) residues, respectively. FA forms four hydrogen bonds with Arg 33 (p65), Arg 187 (p65), and Gln 606 (p50) residues. The results suggest that FA analogs (FA74, FA75 & FA 71) show promising leads that may act as effective modulators of NF-κB
activity through interaction with the p50 domain or p65 Nuclear Localising Sequence (NLS) or interference of gene expression. Further MD simulations, synthesis, and pre-clinical studies may elucidate the precise relationship between NF-κB and FA analogs.
References
1. Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell. 2002;109(2):S81-96.
2. Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T,
et al. Anti-neuroinflammatory potential of polyphenols by inhibiting NF-κB to halt Alzheimer's disease. Curr Pharm Des. 2021;27(3):402-14.
3. Perkins ND. Integrating cell-signaling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49-62.
4. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science. 2004;306(5696):704-8.
5. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. Nat Rev Mol Cell Biol. 1997;100(12):2952-60.
6. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet Jr RJ, Sledge Jr GW. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Bio. 1997;17(7):3629-39.
7. Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leuk. 2021;35(4):968-81.
8. Gilmore TD, Gerondakis S. The c-Rel transcription factor in development and disease. Genes Cancer. 2011;2(7):695-711.
9. Lamas AZ, Nascimento AM, Medeiros ARS, Caliman IF, Dalpiaz PLM, Firmes LB, et al. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-κB in estrogen-deficient rats. Pharmacol Rep. 2017;69(4):798-805.
10. Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG. Plant growth promotion in soil by some inoculated microorganisms. J Microbiol. 2003;41(4):271-6.
11. Sina C, Arlt A, Gavrilova O, Midtling E, Kruse ML, Müerköster SS, et al. Ablation of gly96/immediate early gene-X1 (gly96/iex-1) aggravates DSS-induced colitis in mice: role for gly96/iex-1 in the regulation of NF-κB. Inflamm. Bowel Dis. 2010;16(2):320-31.
12. Das R, Mehta DK, Gupta S, Dhanawat M. Design, synthesis, anti-microbial and molecular docking studies of novel 5-Pyrazyl-2-Sulfanyl-1, 3, 4-Oxadiazole Derivatives. Recent Adv Anti-Infect Drug Discov. 2022;17(2):118-30.
13. Guan C, Zhou X, Li H, Ma X, Zhaung J. NF-κB inhibitors gifted by nature: The anti-cancer promise of polyphenol compounds. Biomed Pharmacother. 2022;156:113951.
14. Russo GL, Vastolo V, Ciccarelli M, Albano L, Macchia PE, Ungaro P. Dietary polyphenols and chromatin remodelling. Crit Rev Food Sci Nutri. 2017;57(12):2589-99.
15. Hamm CA, Costa FF. Epigenomes as therapeutic agents. Pharm Therap. 2015;151:72-86.
16. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY). 2017;9:1477-536.
17. Ho E, Clarke JD, Dashwood RH. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr. 2009;139(12):2393-6.
18. Buranov AU, Mazza G. Extraction and purification of Ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem. 2009;115(4):1542-8.
19. Srinivasan M, Sudheer AR, Menon VP. Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr. 2007;40(2):92-100.
20. Wang T, Gong X, Jiang R, Li H, Du W, Kuang G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am J Transl. Res. 2016;8(2):968.
21. Mahmoud AM, Hussein OE, Abd El-Twab SM, Hozayen WG. Ferulic acid protects against methotrexate nephrotoxicity via activation of Nrf2/ARE/HO-1 signaling and PPARγ, and suppression of NF-κB/NLRP3 inflammasome axis. Food & Funct. 2019;10(8):4593-607.
22. Kiran TN, Alekhya CS, Lokesh BV, Latha AM, Prasad YR, Mounika TN. Synthesis, characterization and biological screening of Ferulic acid derivatives. J Cancer Ther. 2015;6(10):917.
23. Cheemanapalli S, Palaniappan C, Mahesh Y, Iyyappan Y, Yarrappagaari S, Kanagaraj S. In vitro and in silico perspectives to explain anticancer activity of a novel syringic acid analog ((4-(1H-1, 3-benzodiazol-2-yl)-2, 6-dimethoxy phenol)) through apoptosis activation and NF-κB inhibition in K562 leukemia cells. Comput Biol Med. 2023;152:106349.
24. Karjalainen A, Doan P, Chandraseelan JG, Sandberg O, Yli-Harja O, Candeias NR, et al. Synthesis of phenol-derivatives and biological screening for anticancer activity. Anticancer Agents Med Chem. 2017;17(12):1710-20.
25. Gomes CA, Girão da Cruz T, Andrade JL, Milhazes N, Borges F, Marques MP. Anticancer activity of phenolic acids of natural or synthetic origin: a structure − activity study. J Med Chem. 2003;46(25):5395-401.
26. Lipinski CA. Lead-and drug-likes compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-41.
27. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR. MDCK (Madin Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999;88(1):28-33.
28. Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci. 2001;90(6):749-84.
29. Schüttelkopf AW, Van Aalten DM. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60(8):1355-63.
30. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61.
31. Schrödinger L. The PyMOL molecular graphics system v 2.4.1. Schrödinger: New York, NY, USA; 2020.
32. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3(10):768-80.
33. Shi Y, Chen X, Qiang S, Su J, Li J. Anti-oxidation and anti-inflammatory potency evaluation of ferulic acid derivatives obtained through virtual screening. Int J Mol Sci. 2021;22(21):11305.
34. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332-6.
35. Giacomarra M, Mangano A, Montana G. The anti-inflammatory activity of ferulic acid on NF-κB depends on Keap1. LOJ Phar Cli Res. 2020;2(2).
36. Adeyi OE, Somade OT, Ajayi BO, James AS, Adeboye TR, Olufemi DA, et al. The anti-inflammatory effect of ferulic acid is via the modulation of NFκB-TNF-α-IL-6 and STAT1-PIAS1 signalling pathways in 2-methoxyethanol-induced testicular inflammation in rats. Phytomed. Plus. 2023;3(3):100464.
37. Mao JL, Wang L, Chen SJ, Yan B, Xun LY, Li RC, et al. Design, synthesis, antiviral activities of ferulic acid derivatives. Front Pharmacol. 2023;14:1133655.
38. Kuang J, Wei XL, Xie M. The effect of sodium ferulate in experimental pulmonary fibrosis via NALP3 inflammasome. Sichuan Da Xue Xue Bao Yi Xue Ban. 2017;48:503-508
39. Nguyen VS, Loh XY, Wijaya H, Wang J, Lin Q, Lam Y, Wong WS, Mok YK. Specificity and inhibitory mechanism of andrographolide and its analogs as antiasthma agents on NF-κB p50. J Nat Prod. 2015;78(2):208-17.
40. Kong LM, Deng X, Zuo ZL, Sun HD, Zhao QS, Li Y. Identification and validation of p50 as the cellular target of eriocalyxin B. Oncotarget. 2014;5(22):11354.
41. Yu Y, Wan Y, Huang C. The biological functions of NF-κB1. Curr Cancer Drug Targets. 2009;9(4):566-71.
42. Mukhopadhyay T, Roth JA, Maxwell SA. Altered expression of the p50 subunit of the NF-kappa B transcription factor complex in non-small cell lung carcinoma. Oncogene. 1995;11(5):999-1003.
43. Budunova IV, Perez P, Vaden VR, Spiegelman VS, Slaga TJ, Jorcano JL. Increased expression of p50-NF-κB and constitutive activation of NF-κB transcription factors during mouse skin carcinogenesis. Oncogene. 1999;18(52):7423-31.
44. Urban MB, Baeuerle PA. The 65-kD subunit of NF-kappa B is a receptor for I kappa B and a modulator of DNA-binding specificity. Genes Dev. 1990;4(11):1975-84.
45. Cheemanapalli S, Chinthakunta N, Shaikh NM, Shivaranjani V, Pamuru RR, Chitta SK. Comparative binding studies of curcumin and tangeretin on up-stream elements of NF-κB cascade: a combined molecular docking approach. Netw Model Anal Health Inform Bioinform. 2019;8:1-1.
46. Wang T, Gong X, Jiang R, Li H, Du W, Kuang G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am J Transl. Res. 2016;8(2):968.
47. Manoharan S, Rejitharaji T, Prabhakar M, Manimaran A, Singh R. Modulating effect of ferulic acid on NF-κB, COX-2 and VEGF expression pattern during 7, 12-Dimethylbenz (a) anthracene Induced Oral Carcinogenesis. The Open Nutraceuticals J. 2014;7(1).
48. Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3, 5-Bis (2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anticancer properties. Int Immunopharmacol. 2012;12(2):368-77.
49. Cichocki M, Szaefer H, Krajka-Kuźniak V, Baer-Dubowska W. The effect of resveratrol and its methylthio-derivatives on EGFR and Stat3 activation in human HaCaT and A431 cells. Mol Cell Biochem. 2014;396:221-8.
50. Mulakayala C, Babajan B, Madhusudana P, Anuradha CM, Rao RM, Nune RP, et al. Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. J Mol Graph Model. 2013;41:43-54.
51. Kwon MY, Kim SM, Park J, Lee J, Cho H, Lee H, et al. A caffeic acid-ferulic acid hybrid compound attenuates lipopolysaccharide-mediated inflammation in BV2 and RAW264. 7 cells. Biochem Biophys Res Commun. 2019;515(4):565-71.
52. Duan X, Liu N, Lv K, Wang J, Li M, Zhang Y, et al. Synthesis and anti-inflammatory activity of ferulic acid-sesquiterpene lactone hybrids. Molecules. 2024;29:936.
53. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099-105.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.