Interakcje miedzy nikotyną i morfiną w modelach zwierzęcych
DOI:
https://doi.org/10.2478/v10080-008-0182-yAbstrakt
Morfina i nikotyna są jednymi z najczęściej nadużywanych środków psychoaktywnych u ludzi, wywołujących silne uzależnienie psychofi zyczne. Wiele danych literatury wskazuje na istnienie funkcjonalnych interakcji miedzy tymi związkami, co świadczy o współdziałaniu układu opioidowego i cholinergicznego. W pracy zebrano informacje dotyczące tego typu interakcji między nikotyną a morfiną w podstawowych zwierzęcych modelach doświadczalnych, ze szczególnym uwzględnieniem antynocycepcji i działań nagradzających.
Bibliografia
1. A r a k i H., K a w a k a m i K. Y., Jin C. et al.: Nicotine attenuates place aversion induced by
naloxone in single-dose, morphine-treated rats. Psychopharmacology, 17, 398, 2004.
2. B e r r e n d e r o F., K i e f f e r B. L., M a l d o n a d o R.: Attenuation of nicotine-induced
antinociception, rewarding effects, and dependence in μ-opioid receptor knock-out mice. J.
Neurosci, 22, 10935, 2002.
3. B i a l a G., B u d z y n s k a B., S t a n i a k N.: Effects of rimonabant on the reinstatement
of nicotine-conditioned place preference by drug priming in rats. Behav Brain Res., 2009,
doi:10.1016/j.bbr.2009.03.042
4. B i a l a G., B u d z y n s k a B., K r u k M.: Naloxone precipitates nicotine abstinence syndrome
and attenuates nicotine-induced antinociception in mice. Pharmacol. Rep., 57, 755, 2005.
5. B i a l a G., W e g l i n s k a B.: Calcium channel antagonists attenuate cross-sensitization to the
rewarding and/or locomotor effects of nicotine, morphine and MK-801. J Pharm Pharmacol., 56,
1021, 2004.
6. B i a l a G., W e g l i n s k a B.: On the mechanism of cross-tolerance between morphine- and
nicotine-induced antinociception: Involvement of calcium channels. Prog Neuropsychopharmacol.
Biol. Psychiatry, 30, 15, 2006.
7. B u d z y ń s k a B., B i a ł a G.: Reinstatement of drug addiction in animal models. Annales
UMCS, sect. DDD, vol. XIX, N 2, 89, 2006.
8. C a m p b e l l V. C., T a y l o r R. E., T i z a b i Y.: Antinociceptive effects of alcohol and nicotine:
involvement of the opioid system. Brain Res, 1097, 71, 2006.
9. C o r d e r o - E r a u s q u i n M., C h a n g e u x J. P.: Tonic nicotinic modulation of serotoninergic
transmission in the spinal cord, Proc. Natl. Acad. Sci. USA, 98, 2803, 2001.
10. D a v e n p o r t K. E., H o u d i A. A., V a n L o o n G. R.: Nicotine protects against mu-
opioid receptor antagonism by beta-funaltrexamine: evidence for nicotine-induced release of
endogenous opioids in brain. Neurosci. Lett., 113, 40, 1990.
11. D i C h i a r a G.: Role of dopamine in behavioural actions of nicotine related to addiction. Eur.
J. Pharmacol., 393, 295, 2000.
12. D i C h i a r a G., I m p e r a t o A.: Drugs abused by humans preferentially increase synaptic
dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Nat. Acad. Sci.
USA, 85, 5274, 1988.
13. F i s e r o v a M., C o n s o l o S., K r s i a k M.: Chronic morphine induces long-lasting changes
in acetylcholine release in rat nucleus accumbens core and shell: an in vivo microdialysis study.
Psychopharmacology, 142, 85, 1999.
14. H i l d e b r a n d B. E., N o m i k o s G. G., H e r t e l P. et al.: Reduced dopamine output in the
nucleus accumbens but not in the medial prefrontal cortex in rats display a mecamylamine-
precipitated nicotine withdrawal syndrome. Brain Res., 779, 214, 1998.
15. H o u d i A. A., P i e r z c h a l a K., M a r s o n L. et al.: Nicotine-induced alteration in Tyr-
Gly-Gly and Met-enkephalin in discrete brain nuclei reflects altered enkephalin neuron activity.
Peptides, 12, 161, 1991.
16. K i g u c h i N., M a e d a T., T s u r u g a M. et al.: Involvement of spinal Met-enkephalin in
nicotine-induced antinociception in mice. Brain Res., 1189, 70, 2008.
17. K l i t e n i c k M. A., D e W i t t e P., K a l i v a s P. W.: Regulation of somatodendric dopamine
release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J.
Neurosci., 12, 2623, 1992.
18. L i X., E i s e n a c h J. C.: Nicotinic acetylcholine receptor regulation of spinal norepinephrine
release. Anesthesiology, 96, 1450, 2002.
19. M a l i n D. H.: Nicotine dependence. Studies with a laboratory model. Pharmacol. Biochem.
Behav., 70, 551, 2001.
20. M a l i n D. H., L a k e J. R., N e w l i n - M a u l t s b y P. et al.: Rodent model of nicotine
abstinence syndrome. Pharmacol. Biochem. Behav., 43, 779, 1992.
21. M a n s o u r A., F o x C. A., A k i l H. et al.: Opioid-receptor mRNA expression in the rat CNS:
anatomical and functional implications. Trends Neurosci., 18, 22, 1995.
22. M i l l e r A. D., B l a h a C. D.: Midbrain muscarinic receptor mechanisms underlying regulation
of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat Eur. J. Neurosci., 21,
1837, 2005.
23. P o l a s t r o n J., M e u n i e r J. C., J a u z a c P.: Chronic morphine induces tolerance and
desensitization of μ-opioid receptor but not down-regulation in rabbit. Eur. J. Pharmacol., 266,
139, 1994.
24. P o m e r l e a u O. F.: Endogenous opioids and smoking: a review of progress and problems.
Psychoneuroendocrinology., 23, 115, 1998.
25. R e z a y o f A., Z a t a l i H., H a e r i - R o h a n i A. et al.: Dorsal hippocampal muscarinic and
nicotinic receptors are involved in mediating morphine reward. Behav. Brain Res., 166, 281,
2006.
26. S c h n o l l R. A., L e r m a n C.: Current and emerging pharmacotherapies for treating tobacco
dependence. Expert Opin. Emerg. Drugs, 11, 429, 2006.
27. S i m o n s C. T., C u e l l a r J. M., M o o r e J. A. et al.: Nicotinic receptor involvement in
antinociception induced by exposure to cigarette smoke. Neurosci. Lett., 389, 71, 2005.
28. T o m e A. R., I z a g u i r r e V., R o s a r i o L. M. et al.: Naloxone inhibits nicotine-induced
receptor current and catecholamine secretion in bovine chromaffin cells. Brain Res., 903, 62,
2001.
29. V i h a v a i n e n T., R e l a n d e r T. R., L e i v i s k ä R. et al.: Chronic nicotine modifies
the effects of morphine on extracellular striatal dopamine and ventral tegmental GABA. J
Neurochem., 107, 844, 2008.
30. W e w e r s M. E., D h a t t R. K., S n i v e l y T. A. et al.: The effect of chronic administration
of nicotine on antinociception, opioid receptor binding and met-enkephalin levels in rats. Brain
Res., 822, 107, 1999.
31. W o n n a c o t t S.: Presynaptic nicotinic ACh receptors. Trends Neurosci., 20, 92, 1997.
32. Y e o m a n s J., B a p t i s t a M.: Both nicotinic and muscarinic receptors in ventral tegmental
area contribute to brain-stimulation reward. Pharmacol. Biochem. Behav., 57, 915, 1997.
33. Z a r r i n d a s t M. R., F a r z i n D.: Nicotine attenuates naloxone-induced jumping behaviour
in morphine-dependent mice. Eur. J. Pharmacol., 298, 1, 1996.
34. Z a r r i n d a s t M. R., K h o s h a y a n d M. R., Shafaghi B.: The development of cross-tolerance
between morphine and nicotine in mice. Eur. Neuropsychopharmacol., 9, 227, 1999.
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2009 Autor

Praca jest udostępniana na licencji Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.