Roślinne inhibitory metaloproteinaz i możliwość ich zastosowania w prewencji fotostarzenia

Abstrakt

Fotostarzenie się jest procesem starzenia się skóry, którego główną przyczyną jest długotrwała ekspozycja skóry na promieniowanie ultrafioletowe. Skutkiem tego procesu jest przedwczesne pojawianie się zmarszczek, nadmierna melanogeneza, utrata elastyczności, zwiększona szorstkość i suchość skóry. W organizmie człowieka promieniowanie UV powoduje uwalnianie enzymów zwanych metaloproteinazami macierzy zewnątrzkomórkowej (MMPs). MMPs powodują rozkład mecierzy zewnatrzkomórkowej (ECM). Macierz zewnątrzkomórkowa zbudowana jest z białek strukturalnych takich jak: kolagen, elastyna, fibronektyna, laminina, żelatyna i agrekan. Rozkład ECM może być przyczyną wcześniejszego starzenia się skóry, angiogenezy, stanów zapalnych, apoptozy i rozwoju nowotworów. Obecnie znanych jest pięć rodzajów MMPs: kolagenazy, żelatynazy, stromielizyny, matrylizyny i błonowe MMPs. W fotostarzeniu największy udział przypisuje się MMP-1, MMP-2, MMP-3, MMP-9 i MMP-13. Aktywność MMPs jest regulowana przez inhibitory pochodzenia naturalnego jak i syntetyczne. Znane są cztery rodzaje tkankowych inhibitorów metalloproteinaz: TIMP-1, TIMP-2, TIMP-3 i TIMP-4. Wielu naukowców poszukuje biologicznie aktywnych związków chemicznych w celu zastosowania ich jako inhibitory MMPs. Ich naturalnym zródłem są rośliny. Do znanych roślin posiadających takie właściwości należą: Macrocystis pyrifera (L.), Camellia sinensis (L.) and Eucommia ulmoides (Oliv.).

PDF (Angielski)

Bibliografia

1. Afaq F., Mukhtar H.: Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp. Derm., 15, 678, 2006.

2. Baumann L.: Skin ageing and its treatment. J. Pathol., 211, 241, 2007.

3. Błaszczyk-Kostanecka M., Wolska H.: Dermatologia w praktyce. Roz.42 PZWL, Warszawa 2005.

4. Bruno M. et al.:Uses of algae in the context of problems of the environment and of public health. Research, 1,124, 2004.

5. Cardozo K. H. et al.: Metabolites from algae with economical impact. Comp. Biochem. Physiol., 146, 60, 2007.

6. Carrillo S. et al.: Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. J. Appl. Phycol., 20, 721, 2008.

7. Chang Ch., We r b Z.: The many faces of metalloproteases all growth invasion, angiogenesis and metastasis. Cell Biol., 11, 37, 2001.

8. Deyama T.: The comstituents and pharmacological activities of Eucommia ulmoides bark. International Symposium on Eucommia ulmoides, 1, 21, 2007.

9. Dziankowska-Bartkowiak B. et al.: Stężenie metalloproteinazy 2 i 9 (MMp – 2 i MMP – 9) w surowicy chorych na twardzinę układową – porównanie z ich ekspresją w chorobowo zmienionej skórze – badania wstępne. Post. Dermatol. Alergol., 2, 73, 2007.

10. Fujii T. et al.: Amla (Emblica officinalis Gaertn.) extract promotes procollagen production and inhibits matrix metalloproteinase-1 in human skin fibroblasts. J. Ethnopharmaco, 119, 53, 2008.

11. Galus R. et al.: Fotostarzenie się skóry. Pol. Merk. Lek., 22, 580, 2007.

12. Gotoh T. et al.: Adsorption of Cu and MN on covalently cross-linked alginate gel beads. Chemosphere, 55, 57, 2004.

13. Hegnauer R., Hegnauer M.: Chemotaxonomie der Pflanzen. Bd V. Birkhauser Verlag, Basel – Stuttgart 1989.

14. Ho J. N. et al.: Inhibitory effect of aucubin isolated from Eucommia ulmoides against UVB – induced matrix metalloproteinase – 1 production in human skin fibroblasts. Biosci. Biotechnol. Biochem., 11, 2227, 2005.

15. Huang X. et al.: Genistein inhibits p38 Map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Research, 65, 3470, 2005.

16. Jin H. Z. et al.: A new quinazolinedione alkaloid from the fruits of Evodia officinalis. Fitoterapia, 79, 317, 2008.

17. Kim H. H. et al.: Augmantation of UF-induced skin wrinkling by infrared irradiation in hairless mice. Mechanisms of Ageing and Development, 126, 1170, 2005.

18. Kim J. et al.: Protective effects of (-)-epigallocatechin-3-gallate on UVA - and UVB –induced skin damage. Skin. Pharmacol. Appl. Skin. Physiol., 14, 11, 2001.

19. Kołomecki K.: Hamowanie funkcji metaloproteinaz – możliwości zastosowania klinicznego. Onkol. Pol., 3, 163, 2003.

20. Lewis W. H.: Medical Botany. John Wiley and Sons, 2003.

21. Li R. W. et al.: Green tea leaf extract improves lipid and glucose homeostasis in a fructose-fed insulin-resistant hamsten model. J. Ethnopharm., 104, 24, 2006.

22. Li Y. et al.: The promoting effect of eucommiol from Eucommiae cortex on collagen synthesis. Biol. Pharm. Bull., 1, 54, 2000.

23. Lombard C. et al.: Assays of matrix metalloptoteinases (MMPs) activities: a review. Biochimie, 87, 265, 2005.

24. Mannello F.: Natural Bio-Drugs as Matrix Metalloproteinase Inhibitors: New Perspectives on the Horizon? Recent Patents on Anti-Cancer Drug Discovery, 1, 91, 2006.

25. Mirshafiey A. et al.: Sodium alginate as a novel therapeutic option in experimental colitis. Scandinavian J. Immuno.,1, 316, 2005.

26. Moon H.I.et al.: Matrix metalloproteinases – 1 inhibitor from the aerial parts of Viola ibukiana Makino. Bull. Korean Chem. Soc., 3, 451, 2005.

27. Moon H. I. et al.: Isoflavonoid from Viola hondoensis regulates the expression of matrix metalloproteinase – 1 in human skin fibroblasts. Biol. Pharm. Bull., 5, 925, 2005.

28. Ong V. Y., Ta n B.: Novel phytoandrogens and lipidic augmenters from Eucommia ulmoides. BMC Complem. and Alter. Med., 3, 1 , 2007.

29. Puricellia L. et al.: Preliminary evaluation of inhibition of matrix- metalloprotease MMP-2 and MMP-9 by Passiflora edulis and P. foetida aqueous extracts. Fitoterapia, 74, 302, 2003.

30. Rebrova G. A. et al.: Biochemical and photometric studies of modification of collagen structure induced by UV irradiation. Biomed. Chem., 4, 359, 2007.

31. Shahverdi A. R. et al.: Two matrix metalloproteinases inhibitors from Ferula persica var. persica. Phytomed., 9-10, 712, 2006.

32. Sun Y. et al.: Studies on chemical constituents from Eucommia ulmoides (Oliv.). Zhong Yao Cai, 5, 341, 2004.

33. Sun H. H. et al.: A metalloproteinase inhibitor from Doliocarpus verruculosus. Phytotherapy Research, 3, 194, 1996.

34. Śliwowska I., Kopczyński Z.: Metaloproteinazy macierzy zewnątrzkomórkowej – charakterystyka biochemiczna i kliniczna wartość oznaczania u chorych na raka piersi. Współ. Onkol., 8, 327, 2005.

35. Tzaphlidou M.: The role of collagen and elastin in aged skin: an image processing approach. Micron, 35, 173, 2004.

36. Vayal i l P. et al.: Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J. Invest. Dermatol., 122, 1480, 2004.

37. Verstappen J., Vonden Hoff J. W.: Tissue Inhibitors of Metalloproteinases (TIMPs): Their biological functions and involvement in oral disease. J. Dent. Res., 12, 1074, 2006.

38. Vincent C., Eris I.: Inhibitory metaloproteinaz w trądziku różowatym. Derm. Est., 1, 25, 2004.

39. Visse R., Nagase H.: Matrix metalloproteinases and tissue inhibitor sof metalloproteinases. Structure, function and biochemistry. Circ. Res., 92, 827, 2003.

40. Wlaschek M. et al.: Photoaging as a consequence of natural and therapeutic ultraviolet irradiation – studies on PUVA-induced senescence-like growth arrest of human dermal fibroblasts. Exp. Gerontol., 38, 1265, 2003.

41. Yusuf N. et al.: Photoprotective effects of green tea polyphenols. Photodermatol. Photoimmunol. Photomed., 23, 48, 2007.

Creative Commons License

Praca jest udostępniana na licencji Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.

Prawa autorskie (c) 2025 Daniel Załuski, Helena Danuta Smolarz (Autor)

Downloads

Download data is not yet available.