Abstrakt
Celem pracy było oszacowanie wpływu werapamilu (blokera kanałów wapniowych typu L) na przeciwdrgawkowy potencjał okskarbazepiny (leku przeciwpadaczkowego drugiej generacji) w teście maksymalnego wstrząsu elektrycznego (MES) u myszy. Drgawki elektryczne u myszy Albino Swiss wywoływano prądem (25 mA, 500 V, 50 Hz, 0,2 s czas trwania stymulacji) dostarczanym przez elektrody uszne. Profile działań niepożądanych w odniesieniu do koordynacji ruchowej, pamięci długotrwałej i szkieletowej siły mięśniowej mierzono wraz z całkowitymi mózgowymi stężeniami okskarbazepiny. Werapamil (20 mg/kg, i.p.) istotnie nasilał przeciwdrgawkową aktywność okskarbazepiny w teście MES u myszy, zmniejszając jej wartość ED 50 z 12,24 do 7,48 mg/kg (P<0,01). Przeciwnie, werapamil (5 i 10 mg/kg) nie miał istotnego wpływu na przeciwdrgawkową aktywność okskarbazepiny w teście MES. Ponadto werapamil (20 mg/kg) istotnie podwyższał całkowite mózgowe stężenie okskarbazepiny u myszy, mierzone wysokosprawną chromatografią cieczową. Kombinacja okskarbazepiny z werapamilem w dawkach z testu MES nie upośledzała koordynacji ruchowej w teście komina, pamięci długotrwałej w teście biernego unikania i siły mięśni szkieletowych w teście chwytania. W podsumowaniu, szczególna uwaga jest zalecana podczas łączenia okskarbazepiny z werapamilem z powodu możliwego farmakokinetycznego wzrostu całkowitego mózgowego stężenia okskarbazepiny u pacjentów otrzymujących oba leki.
Bibliografia
1. Bebawy M., Morris M. B., Roufogalis B. D.: Selective modulation of P-lycoproteinmediated drug resistance. Br. J. Cancer, 85, 1998–2003, 2001.
2. Boissier J. R., Tardy J., Diverres J. C.: Une nouvelle méthode simple pour explorer l’action tranquilisante: le test de la cheminée. Med. Exp. (Basel), 3, 81, 1960.
3. Bradford H. F.: Glutamate, GABA and epilepsy. Prog. Neurobiol., 47, 477, 1995.
4. Brodie M. J., Schachter S. C.: Fast Facts. Epilepsy. 2nd ed. Oxford: Health Press; 2001,82 p.
5. Calabresi P., De Murtas M., Stefani A. et al.: Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system, I: modulation of corticostriatal synaptic transmission. Epilepsia, 36, 990, 1995.
6. Campbell T. J., Williams K. M.: Therapeutic drug monitoring: antiarrhythmic drugs. Br. J. Clin. Pharmacol., 52 Suppl., 1, 21S, 2001.
7. Cheng H. P., Wei S., Wei L. P. et al.: Calcium signaling in physiology and pathophysiology. Acta Pharmacol. Sin., 27, 767, 2006.
8. Choi D. W.: Calcium and excitotoxic neuronal injury. Ann. N. Y. Acad. Sci., 747, 162, 1994.
9. Clinckers R., Smolders I., Meurs A. et al.: Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J. Pharmacol. Exp. Ther., 314, 725, 2005.
10. Czuczwar S. J., Chodkowska A., Kleinrok Z. et al.: Effects of calcium channel inhibitors upon the efficacy of common antiepileptic drugs. Eur. J. Pharmacol., 176, 75, 1990.
11. Czuczwar S. J., Turski W. A., Kleinrok Z.: Interactions of excitatory amino acid antagonists with conventional antiepileptic drugs. Metab. Brain Dis., 11, 143, 1996.
12. De Sarro G. B., Meldrum B. S., Nistico G.: Anticonvulsant effects of some calcium entry blockers in DBA/2 mice. Br. J. Pharmacol., 93, 247, 1988.
13. D eckers C. L., Czuczwar S. J., Hekste r Y. A. et al.: Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia, 41, 1364, 2000.
14. Hedner T.: Calcium channel blockers: spectrum of side effects and drug interactions. Acta Pharmacol. Toxicol. (Copenh)., 58 Suppl., 2, 119, 1986.
15. HeinemannU., Hamon B.: Calcium and epileptogenesis. Exp. Brain Res., 65, 1, 1986.
16. Hockerman G. H., Peterson B. Z., Johnso n B. D. et al.: Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol., 37, 361, 1997.
17. Jagiełło-WójtowiczE., Czuczwar S. J., Chodkowska A. et al.: Influence of calcium channel blockers on pentylenetetrazol and electroshock-induced convulsions in mice. Pol. J. Pharmacol. Pharm., 43, 95, 1991.
18. Kamiński R., JasińskiM., Jagiełło-Wójtowicz E. et al.: Effect of amlodipine upon the protective activity of antiepileptic drugs against maximal electroshock-induced seizures in mice. Pharmacol. Res., 40, 319, 1999.
19. Karler R., Calder L. D., Turkanis S. A.: Calcium channel blockers and excitatory amino acids. Brain Res., 551, 331, 1991.
20. Köhlin g R., LehmenkükhlerA., Nicholson C. et al.: Superfusion of verapamil on the cerebral cortex does not suppress epileptic discharges due to restricted diffusion (rats, in vivo). Brain Res., 626, 149, 1993.
21. Kułak W., Sobaniec W., Wojtal K. et al.: Calcium modulation in epilepsy. Pol. J. Pharmacol., 56, 29, 2004.
22. Kusuhara H., Sekine T., Utsunomiya-Tate N. et al.: Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem., 274, 13675, 1999.
23. Litchfield J. T., Wilcoxon F.: A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther., 96, 99, 1949.
24. Löscher W., Fassbender C. P., Nolting B.: The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res., 8, 79, 1991.
25. Lu H. R., Remeysen P., De Clerck F.: Antifibrillary action of class I-IV antiarrhythmic agents in the model of ventricular fibrillation threshold of anesthetized guinea pigs. J. Cardiovasc. Pharmacol., 26, 132, 1995.
26. Łuszczki J. J., Borowicz K. K., Świąder M. et al.: Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia, 44, 489, 2003.
27. Łuszczki J. J., Czuczwar S. J.: Preclinical profile of combinations of some secondVerapamil generation antiepileptic drugs: an isobolographic analysis. Epilepsia, 45, 895, 2004.
28. Łuszczki J. J., Danysz W., Czuczwar S. J.: Interactions of MRZ 2/576 with felbamate, lamotrigine, oxcarbazepine and topiramate in the mouse maximal electroshock-induced seizure model. Pharmacology, 81, 259, 2008.
29. Łuszczki J. J., Trojnar M. K., Trojnar M. P. et al.: Effects of amlodipine, diltiazem, and verapamil on the anticonvulsant action of topiramate against maximal electroshock-induced seizures in mice. Can. J. Physiol. Pharmacol., 86, 113, 2008.
30. Łuszczki J. J., Trojnar M. K., Trojna r M. P. et al.: Effects of three calcium channel antagonists (amlodipine, diltiazem and verapamil) on the protective action of lamotrigine in the mouse maximal electroshock-induced seizure model. Pharmacol. Rep., 59, 672, 2007.
31. Łuszczki J. J., Wójcik-Ćwikła J., Andres M. M. et al.: Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology, 30, 958, 2005.
32. Macdonald R. L., Greenfield L. J.: Mechanisms of action of new antiepileptic drugs. Curr. Opin. Neurol., 10, 121, 1997.
33. Marinho M. M., d e Bruin V. M., de Sousa F. C. et al.: Inhibitory action of a calcium channel blocker (nimodipine) on seizures and brain damage induced by pilocarpine and lithiumpilocarpine in rats. Neurosci. Lett., 235, 13, 1997.
34. Mc Lean M. J., Schmutz M., Wamil A. W. et al.: Oxcarbazepine: mechanism of action. Epilepsia, 35, S5–S9, 1994.
35. Meldrum B.: Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Res., 50, 33, 2002.
36. Meyer F. B., Anderson R. E., Sund t T. M. et al.: Selective central nervous system calcium channel blockers--a new class of anticonvulsant agents. Mayo Clin. Proc., 61, 239, 1986.
37. Meyer F. B., Anderson R. E., SundtT. M. et al.: Suppression of pentylenetetrazole seizures by oral administration of a dihydropyridine Ca2+ antagonist. Epilepsia, 28, 409, 1987.
38. Nicholls D. G.: Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med., 4, 149, 2004.
39. Speckmann E. J., Straub H., Kohling R.: Contribution of calcium ions to the generation of epileptic activity and antiepileptic calcium antagonism. Neuropsychobiology, 27, 122, 1993.
40. Stefani A., Pisani A., DeMurtas M. et al.: Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system, II: modulation of high-voltage-activated calcium currents. Epilepsia, 36, 997, 1995.
41. Summers M. A., Moore J. L., Mc Auley J. W.: Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann. Pharmacother., 38, 1631, 2004.
42. Tatsuta T., Naito M., Oh-hara T. et al.: Functional involvement of P-glycoprotein in blood-brain barrier. J. Biol. Chem., 267, 20383, 1992.
43. Tfelt-Hansen P., Tfelt-Hansen J.: Verapamil for cluster headache. Clinical pharmacology and possible mode of action. Headache, 49, 117, 2009.
44. Thomas J.: The effect of nimodipine on picrotoxin-induced seizures. Brain Res. Bull., 24, 11, 990.
45. Venault P., Chapouthier G., de Carvalho L. P. et al.: Benzodiazepine impairs and beta-carboline enhances performance in learning and memory tasks. Nature, 321, 864, 1986.
46. Waldmeier P. C., Martin P., Stöcklin K. et al.: Effect of carbamazepine, oxcarbazepine and lamotrigine on the increase in extracellular glutamate elicited by veratridine in rat cortex and striatum. Naunyn Schmiedebergs Arch. Pharmacol., 354, 164, 1996.
47. White S. H.: Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia, 40(suppl 5), S2, 1999.
48. Wurpel J. N., Iyer S. N.: Calcium channel blockers verapamil and nimodipine inhibit kindling in adult and immature rats. Epilepsia, 35, 443, 1994.
49. Yedinak K. C.: Use of calcium channel antagonists for cardiovascular disease. Am. Pharm., NS33, 49, 1993.

Praca jest udostępniana na licencji Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Prawa autorskie (c) 2009 Autorzy