Synteza nowych 4-azolidynonów z cząsteczką 3,5-diaryl-4,5-dihydropirazolu i ocena ich aktywności przeciwnowotworowej in vitro

Autor

  • Dmytro Havrylyuk Danylo Halytskyi Lviv National Medical University, Department of Pharmaceutical, Organic and Bioorganic Chemistry, Ukraine Autor
  • Nataliya Kovach Danylo Halytskyi Lviv National Medical University, Department of Pharmaceutical, Organic and Bioorganic Chemistry, Ukraine Autor
  • Borys Zimenkovsky Danylo Halytskyi Lviv National Medical University, Department of Pharmaceutical, Organic and Bioorganic Chemistry, Ukraine Autor
  • Roman Lesyk Danylo Halytskyi Lviv National Medical University, Department of Pharmaceutical, Organic and Bioorganic Chemistry, Ukraine Autor

Słowa kluczowe:

4-azolidynony, 3,5-diaryl-4,5-dihydropirazole, acylacja, alkilacja, spektra 1H NMR, aktywność przeciwnowotworowa

Abstrakt

W pracy opisano proces syntezy nowego 4-azolidonu z podstawnikiem pirazolinowym. Zgodnie z protokołem NCI przebadano sześć uzyskanych substancji, przy czym dwie z nich (4d, 4e) wykazały aktywność przeciwnowotworową w stosunku do linii komórkowych białaczki, czerniaka, raka płuc, okrężnicy, OUN, jajników, nerek, prostaty i piersi.

Bibliografia

1. Abadi A.H. et al.: Synthesis of novel 1,3,4-trisubstituted pyrazole derivatives and their evaluation as antitumor and antiangiogenic agents. Chem. Pharm. Bull., 51, 838, 2003.

2. Beswick M.C. et al.: 3-(2-Hydroxy-phenyl)-1H-pyrazole-4-carboxylic acid amide derivatives as HSP90 inhibitors for the treatment of cancer. US 2007/0112192.

3. Carter P. H. et al.: Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha. Proc. Natl. Acad. Sci. USA, 98, 11879, 2001.

4. Cutshall N. S. et al.: Rhodanine derivatives as inhibitors of JSP-1. Bioorg. Med. Chem. Lett., 15, 3374, 2005.

5. Dayam R. et al.: Discovery of small molecule integrin αvβ3 antagonists as novel anticancer agents. J. Med. Chem., 49, 4526, 2006.

6. Degterev A. et al.: Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nature Cell. Biol., 3, 173, 2001.

7. Havrylyuk D. et al.: Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem., 44, 1396, 2008.

8. http://dtp.nci.nih.gov

9. Kaminskyy D., Zimenkovsky B., Lesyk R.: Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur. J. Med. Chem., 44, 3627, 2009.

10. Lin R. et al.: Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as anti-tumor CDK inhibitors. Bioorg. Med. Chem. Lett., 17, 4557, 2007.

11. Manna F. et al.: Synthesis of some pyrazole derivatives and preliminary investigation of their affinity binding to P-glycoprotein. Bioorg. Med. Chem. Lett., 15, 4632, 2005.

12. Palaska E. et al.: Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 36, 539, 2001.

13. Popov-Pergal К. et al.: Condensation of 2,4-dioxotetrahydro-1,3-thiazole with aromatic aldehydes. J. Gen. Chem. USSR, 61, 1958, 1991.

14. Shoemaker R. H.: The NCI60 human tumour cell line anticancer drug screen. Nature Rev. Cancer, 6, 813, 2006.

15. Zimenkovskii B.S. et al.: Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharm.Chem. J., 40, 303, 2006.

Opublikowane

2010-09-30