Methodological approaches for inducing diabetes-like metabolic conditions in zebrafish larvae
DOI:
https://doi.org/10.12923/cipms-2025-0024Słowa kluczowe:
zebrafish, diabetes, hyperglycemia, alloxan, streptozotocin, glucoseAbstrakt
Zebrafish represent a widely used model for studying metabolic disorders due to their genetic similarity to humans, low cost of breeding and suitability for high-throughput screening. This review presents current methodological approaches for inducing diabetes-like metabolic conditions in zebrafish larvae, focusing on both glucose-based exposure (immersion in high-glucose solutions) and chemical induction methods using compounds such as streptozotocin and alloxan. The main advantages and limitations of each protocol are summarized, including variations in exposure duration, developmental stage and compound concentration. Standardized and validated protocols remain crucial for enhancing comparability across studies and for enabling reliable preclinical testing of antidiabetic compounds. The zebrafish larval model continues to offer a promising and flexible system for investigating the mechanisms underlying diabetes and related metabolic dysfunctions.
Bibliografia
1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
2. King A, Bowe J. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochem Pharmacol. 2016;99:1-10.
3. Kottaisamy CPD, Raj DS, Kumar VP, Sankaran U. Experimental animal models for diabetes and its related complications – a review. Lab Anim Res. 2021:37:23.
4. Kurach Ł, Chłopaś-Konowałek A, Budzyńska B, Zawadzki M, Szpot P, Boguszewska-Czubara A. Etazene induces developmental toxicity in vivo danio rerio and in silico studies of new synthetic opioid derivative. Sci Rep. 2021;11.
5. van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, et al. Wild-type zebrafish (Danio Rerio) larvae as a vertebrate model for diabetes and comorbidities: a review. Animals. 2021;11:54.
6. Kinkel MD, Prince VE. On the diabetic menu: Zebrafish as a model for pancreas development and function. BioEssays. 2009;31:139-52.
7. Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, et al. Diet-Induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 2010;10:21.
8. Craig PM, Moon TW. Fasted zebrafish mimic genetic and physiological responses in mammals: A model for obesity and diabetes? Zebrafish. 2011;8:109-17.
9. Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR,
et al. Challenges and issues with streptozotocin-induced diabetes – a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 2016;244:49-63.
10. Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-Induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina. 2017;53:365-74.
11. Nam YH, Le HT, Rodriguez I, Kim EY, Kim K, Jeong SY, et al. Enhanced antidiabetic efficacy and safety of compound K⁄β-cyclodextrin inclusion complex in zebrafish. J Ginseng Res. 2017;41:103-12.
12. Nam YH, Hong BN, Rodriguez I, Park MS, Jeong SY, Lee Y-G, et al. Steamed ginger may enhance insulin secretion through katp channel closure in pancreatic β-Cells potentially by increasing 1-dehydro-6-gingerdione content. Nutrients. 2020;12:324.
13. Nam YH, Kim EB, Kang JE, Kim JS, Jeon Y, Shin SW, et al. Ameliorative effects of flavonoids from platycodon grandiflorus aerial parts on alloxan-induced pancreatic islet damage in zebrafish. Nutrients. 2023;15:1798.
14. Kim H-G, Nam YH, Jung YS, Oh SM, Nguyen TN, Lee M-H, et al. Aurones and flavonols from Coreopsis Lanceolata L. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in zebrafish. Molecules. 2021;26:6098.
15. Sudhakaran G, Rajesh R, Guru A, Haridevamuthu B, Murugan R, Bhuvanesh N, et al. Deacetylated Nimbin analog N2 fortifies alloxan-induced pancreatic β-Cell damage in insulin-resistant zebrafish larvae by upregulating Phosphoenolpyruvate Carboxykinase (PEPCK) and insulin levels. Toxicol Appl Pharmacol. 2022;454:116229.
16. Nayak SPRR, Haridevamuthu B, Murugan R, Dhivya LS, Venkatesan S, Almutairi MH, et al. Furan-based chalcone protects β-Cell damage and improves glucose uptake in alloxan-induced zebrafish diabetic model via influencing Peroxisome Proliferator-Activated Receptor Agonists (PPAR-γ) signaling. Process Biochem. 2024;142:149-61.
17. Wang X, Yang X, Liu K, Sheng W, Xia Q, Wang R, et al. Effects of Streptozotocin on pancreatic islet β-Cell apoptosis and glucose metabolism in zebrafish larvae. Fish Physiol Biochem. 2020;46:1025-38.
18. Aleström P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, et al. Zebrafish: Housing and husbandry recommendations. Lab Anim. 2020;54:213-24.
19. Dakshitha S, Ghimouz R, Murugan R, Marunganathan V, Subramanian R, Roy A, et al. Triclosan promotes neurotoxicity in diabetic conditions: An in vivo molecular assessment using zebrafish model. 3 Biotech. 2025;15:169.
20. Kim I, Seok SH, Lee H-Y. Development of a zebrafish larvae model for diabetic heart failure with reduced ejection fraction. Korean Circ J. 2023;53:34.
21. Kim I, Cho H-J, Lim S, Seok SH, Lee H-Y. Comparison of the effects of empagliflozin and sotagliflozin on a zebrafish model of diabetic heart failure with reduced ejection fraction. Exp Mol Med. 2023;55:1174-81.
22. Garcia-Campoy AH, Perez Gutierrez RM, Garcia Báez EV, Muñiz-Ramírez A. El Extracto Metanólico de tillandsia recurvata reduce los niveles de glucosa, triglicéridos y colesterol en sangre. Bot. Sci. 2024;102:1251-64.
23. Capiotti KM, Antonioli R, Kist LW, Bogo MR, Bonan CD, Da Silva RS. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp Biochem Physiol B Biochem Mol Biol. 2014;171:58-65.
24. dos Santos MM, de Macedo GT, Prestes AS, Ecker A, Müller TE, Leitemperger J, et al. Modulation of redox and insulin signaling underlie the anti-hyperglycemic and antioxidant effects of diphenyl diselenide in zebrafish. Free Radic Biol Med. 2020;158:20-31.
25. Faal M, Manouchehri H, Changizi R, Bootorabi F, Khorramizadeh MR. Assessment of resveratrol on diabetes of zebrafish (Danio Rerio). J Diabetes Metab Disord. 2022;21:823-33.
26. Chen Q, Wang C, Huang W, Chen F, Hu H, Yang C, et al. Novel dipeptidyl peptidase IV inhibitory peptides derived from sesame proteins: screening, mechanisms and anti-hyperglycemic effects in zebrafish larvae. Ind Crops Prod. 2024;215:118682.
27. Li Y, Chen Q, Liu Y, Bi L, Jin L, Xu K, et al. High glucose-induced ROS-accumulation in embryo-larval stages of zebrafish leads to mitochondria-mediated apoptosis. Apoptosis. 2022;27:509-20.
28. Wang Z, Mao Y, Cui T, Tang D, Wang XL Impact of a combined high cholesterol diet and high glucose environment on vasculature. PLoS ONE. 2013;8:e81485.
29. Lee Y, Yang J. Development of a zebrafish screening model for diabetic retinopathy induced by hyperglycemia: reproducibility verification in animal model. Biomed Pharmacother. 2021;135:111201.
30. Elo B, Villano CM, Govorko D, White LA. Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Mol Endocrinol. 2007;38:433-40.
31. Jung S, Kim YS, Lee Y, Kim JS. High glucose‐induced changes in hyaloid‐retinal vessels during early ocular development of zebrafish: a short‐term animal model of diabetic retinopathy. Br J Pharmacol. 2016;173:15-26.
32. Jiang Y, Cao Y, Li Y, Bi L, Wang L, Chen Q, et al. SNP alleviates mitochondrial homeostasis dysregulation-mediated developmental toxicity in diabetic zebrafish larvae. Biomed Pharmacother. 2024;177:117117.
33. Morrissey NA, Beall C, Ellacott KLJ. Absence of the mitochondrial translocator protein 18 kDa in mice does not affect body weight or food intake responses to altered energy availability. J Neuroendocrinol. 2021;33:e13027.
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Autor

Praca jest udostępniana na licencji Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.