Trening zdrowia – czyli o przygotowaniu organizmu do walki z COVID-19

Autor

  • Piotr Gawda Zakład Medycyny Sportowej, Uniwersytet Medyczny w Lublinie, Polska Autor
  • Grzegorz Zieliński Zakład Medycyny Sportowej, Uniwersytet Medyczny w Lublinie, Polska Autor
  • Magdalena Zawadka Zakład Medycyny Sportowej, Uniwersytet Medyczny w Lublinie, Polska Autor
  • Aleksandra Byś Zakład Medycyny Sportowej, Uniwersytet Medyczny w Lublinie, Polska Autor

DOI:

https://doi.org/10.2478/pjph-2019-0030

Słowa kluczowe:

COVID-19, koronawirus, trening zdrowia, zdrowie publiczne, profilaktyka

Abstrakt

Współistnienie organizmów w świecie jest stanem dynamicznym, wymagającym zachowania pewnych reguł tak, aby utrzymana była równowaga biologiczna pomiędzy nimi. Ogromna ekspansja człowieka w ekosystem Ziemi skutkuje licznymi kryzysami. Jednym z nich jest problem pandemii związanej z chorobą COVID-19. Dynamika rozwoju epidemii zmienia się. Pojawia się coraz więcej opracowań statystycznych, dotyczących przebiegu klinicznego tej choroby. Podejmowane są działania profilaktyczne, specyficzne dla każdego kraju,
mające na celu ograniczenie ilości i intensywności zachorowań w społeczeństwie tak, aby systemy opieki zdrowotnej był wydolny w obliczu pandemii. Duże nadzieje pokładane są w naturalnych mechanizmach obronnych ciała ludzkiego, których skuteczność w dużej mierze zależy od nas samych.   ramach działań profilaktycznych, trening zdrowia czyli regularne ćwiczenia fizyczne wraz z odpowiednim zarządzaniem odpoczynkiem, odżywianiem i snem są w stanie poprawić wydolność fizyczną organizmu, wzmocnić jego obronę immunologiczną, przystosowując organizm do większych obciążeń. Takim względnym obciążeniem, polegającym na zaburzeniu funkcjonowania układu oddechowego, które w konsekwencji ograniczy możliwość pozyskiwania energii koniecznej dla samodzielnego podtrzymania funkcji życiowych może być kliniczny przebieg choroby COVID-19. Rozwój Internetu i mediów społecznościowych zdecydowanie ułatwia poszukiwanie rodzajów aktywności fizycznej, które mogą być wykonywane w warunkach domowych. Dlatego, mimo izolacji i zaleceń dotyczących ograniczenia przemieszczania się, każdy może znaleźć sposób na aktywne spędzenie czasu wolnego, które wpłynie pozytywnie na jego organizm, a co za tym idzie zwiększy jego szanse w ewentualnym ,,starciu’’ z wirusem.

Bibliografia

1. Cascella M, Rajnik M, Cuomo A, et al. Evaluation and treatment coronavirus (COVID-19). Treasure Island (FL): StatPearls Publishing; 2020. http:// www.ncbi.nlm.nih.gov/books/NBK554776/ (dostęp 27.03.2020 r)

2. Shebl E, Burns B. Respiratory Failure. Treasure Island (FL): StatPearls Publishing; 2020. http://www.ncbi.nlm.nih.gov/books/NBK526127/ (dostęp 27.03.2020 r)

3. Aktualne zasady i ograniczenia – Koronawirus: informacje i zalecenia. Koronawirus: informacje i zalecenia. https://www.gov.pl/web/koronawirus/ aktualne-zasady-i-ograniczenia (dostęp: 21.04.2020 r.)

4. Refinetti R. Integration of biological clocks and rhythms. Compr Physiol. 2012;2(2):1213-39.

5. Haspel JA, Anafi R, Brown MK, et al. Perfect timing: circadian rhythms, sleep, and immunity – an NIH workshop summary. JCI Insight. 2020;5(1):e11487.

6. Kecklund G, Axelsson J. Health consequences of shift work and insufficient sleep. BMJ. 2016;355:i5210.

7. Yu X, Rollins D, Ruhn KA, et al. TH17 cell differentiation is regulated by the circadian clock. Science. 2013;342(6159):727-30.

8. Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99(3):1325-80.

9. Asif N, Iqbal R, Nazir CF. Human immune system during sleep. Am J Clin Exp Immunol. 2017;6(6):92-6.

10. Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch. 2012;463(1):121-37.

11. Everson CA. Clinical assessment of blood leukocytes, serum cytokines, and serum immunoglobulins as responses to sleep deprivation in laboratory rats. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R1054-63.

12. Paganelli R, Petrarca C, Di Gioacchino M. Biological clocks: their relevance to immune-allergic diseases. Clin Mol Allergy. 2018;16:1.

13. Faria AMC, Gomes-Santos AC, Gonçalves JL, et al. Food components and the immune system: From tonic agents to allergens. Front Immunol. 2013;4:102.

14. Faria AMC, Reis BS, Mucida D. Tissue adaptation: Implications for gut immunity and tolerance. J Exp Med. 2017;214(5):1211-26.

15. Ponton F, Wilson K, Cotter SC, et al. Nutritional Immunology: A Multi- Dimensional Approach. PLoS Pathog. 2011;7(12):e1002223.

16. Samartı́n S, Chandra RK. Obesity, overnutrition and the immune system. Nutrition Res. 2001;21(1):243-62.

17. Childs CE, Calder PC, Miles EA. Diet and immune function. Nutrients. 2019;11(8):1933.

18. Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018;10(11):1614.

19. Sassi F, Tamone C, D’Amelio P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients. 2018;10(11):1656.

20. Baeke F, Takiishi T, Korf H, et al. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10(4):482-96.

21. Watson NF, Badr MS, Belenky G, et al. Recommended amount of sleep for a healthy adult: A joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38(6):843-4.

22. van Dijk JGB, Matson KD. Ecological immunology through the lens of exercise immunology: New perspective on the Links between physical activity and immune function and disease susceptibility in wild animals. Integr Comp Biol. 2016;56(2):290-303.

23. Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. JSHS. 2019;8(3):201-17.

24. Bigley AB, Rezvani K, Chew C, et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160-71.

25. Gupta P, Bigley AB, Markofski M, et al. Autologous serum collected 1 h post-exercise enhances natural killer cell cytotoxicity. Brain Behav Immun. 2018;71:81-92.

26. Simpson RJ, Bigley AB, Agha N, et al. Mobilizing immune cells with exercise for cancer immunotherapy. Exerc Sport Sci Rev. 2017;45(3):163-72.

27. LaVoy ECP, Bollard CM, Hanley PJ, et al A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exerc Immunol Rev. 2015;21:144-53.

28. Turner JE, Spielmann G, Wadley AJ, et al. Exercise-induced B cell mobilisation: Preliminary evidence for an influx of immature cells into the bloodstream. Physiol Behav. 2016;164:376-82.

29. Nieman DC. Is infection risk linked to exercise workload? Med Sci Sports Exerc. 2000;32(7 Suppl):S406-411.

30. Krüger K, Mooren F-C, Pilat C. The immunomodulatory effects of physical activity. Bentham Science Publishers; 2016. https://www.ingentaconnect. com/content/ben/cpd/2016/00000022/00000024/art00007 (dostęp: 26.04. 2020 r.)

31. Simpson RJ, Campbell JP, Gleeson M, et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev. 2020;26:8-22.

32. Estruel-Amades S, Camps-Bossacoma M, Massot-Cladera M, et al. Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci Rep. 2020;10(1):1-12.

33. Molina‐Molina E, Baccetto RL, Wang DQ-H, et al. Exercising the hepatobiliary- gut axis. The impact of physical activity performance. Eur J Clin Invest. 2018;48(8):e12958.

34. Traczyk W. Fizjologia człowieka w zarysie. VIII. Warszawa: PZWL; 2010.

35. Górski J. Fizjologiczne podstawy wysiłku fizycznego. Warszawa: PZWL; 2014.

36. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 15 2020;395(10223):497-506.

37. Your lungs and exercise. Breathe (Sheff). 2016;12(1):97-100.

38. Kang L, Ma S, Chen M, et al. Impact on mental health and perceptions of psychological care among medical and nursing staff in Wuhan during the 2019 novel coronavirus disease outbreak: A cross-sectional study. Brain, Behavior, and Immunity. 2020;S0889159120303482.

39. Fiorillo A, Gorwood P. The consequences of the COVID-19 pandemic on mental health and implications for clinical practice. Eur Psychiatr. 2020;63(1):e32.

40. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912-20.

41. Bai Y, Lin C-C, Lin C-Y, et al. Survey of stress reactions among health care workers involved with the SARS outbreak. Psychiatr Serv. 2004;55(9):1055-7.

42. Liu X, Kakade M, Fuller CJ, et al. Depression after exposure to stressful events: lessons learned from the severe acute respiratory syndrome epidemic. Compr Psychiatry. 2012;53(1):15-23.

43. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732-41.

44. Bierhaus A, Wolf J, Andrassy M, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci USA. 2003;100(4):1920-5.

45. Dantzer R. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol Rev. 2018;98(1):477-504.

46. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24-31.

47. Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46-56.

48. Warburton DER. Health benefits of physical activity: the evidence. Can Med Assoc J. 2006;174(6):801-9.

49. Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity – a systematic review of longitudinal studies. BMC Public Health. 2013;13:813.

50. Chen C, Chen C, Yan JT, et al. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(0):E008.

51. Tu H, Tu S, Gao S, et al. The epidemiological and clinical features of COVID-19 and lessons from this global infectious public health event. J Infect. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166041/ (dostęp: 22. 04. 2020 r.)

52. Lai C-C, Shih T-P, Ko W-C, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.

53. Daley A. Exercise and Depression: A review of reviews. J Clin Psychol Med Settings. 2008;15(2):140-7.

54. Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464-72.

55. Lowder T, Padgett DA, Woods JA. Moderate exercise protects mice from death due to influenza virus. Brain Behav Immun. 2005;19(5):377-80.

56. Woods JA, Keylock KT, Lowder T, et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: The immune function intervention trial. J Am Geriatr Soc. 2009;57(12):2183-91.

57. Chen P, Mao L, Nassis GP, et al. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Health Sci. 2020;9(2):103-4.

58. Zhu W. Should, and how can, exercise be done during a coronavirus outbreak? An interview with Dr. Jeffrey A. Woods. J Sport Health Sci. 2020;9(2):105-7.

59. Yang Y, Verkuilen J, Rosengren KS, et al. Effects of a Taiji and Qigong intervention on the antibody response to influenza vaccine in older adults. Am J Chin Med. 2007;35(04):597-607.

60. Falkenberg RI, Eising C, Peters ML. Yoga and immune system functioning: a systematic review of randomized controlled trials. J Behav Med. 2018;41(4):467-82.

Opublikowane

2020-09-14