Blue light from screen and depression – A review

Authors

  • Anna Blazhkova T. Marciniak Lower Silesian Specialist Hospital – Emergency Medicine Centre, Wrocław, Poland Author
  • Magdalena Czaja T. Marciniak Lower Silesian Specialist Hospital – Emergency Medicine Centre, Wrocław, Poland Author
  • Dominika Rehan Lower Silesian Center for Oncology, Pulmonology and Hematology, Wrocław, Poland Author
  • Katarzyna Rzym Jan Biziel University Hospital No. 2 in Bydgoszcz, Poland Author
  • Hanna Sitka T. Marciniak Lower Silesian Specialist Hospital – Emergency Medicine Centre, Wrocław, Poland Author
  • Sven Solisch University Clinical Hospital in Opole, Poland Author
  • Anna Susłow T. Marciniak Lower Silesian Specialist Hospital – Emergency Medicine Centre, Wrocław, Poland Author
  • Ewa Szczęsna Lower Silesian Center for Oncology, Pulmonology and Hematology, Wrocław, Poland Author

DOI:

https://doi.org/10.12923/2083-4829/2025-0010

Keywords:

Blue light, depression, circadian rhythm, melatonin, screen exposure, light therapy

Abstract

Introduction. The growing prevalence of screen time in modern societies has significantly increased exposure to blue light,especially from smartphones and computers. While blue light is crucial for circadian rhythm regulation and mood enhancement during the day, its excessive evening exposure may negatively impact sleep quality and emotional stability. Recent studies have pointed toward its potential link with the development of depressive symptoms.

Aim. This review aims to explore the relationship between exposure to blue light particularly from screen-based devices and the development or exacerbation of depressive symptoms, with a focus on biological mechanisms, epidemiological data, and the therapeutic potential of light in mood disorders.

Material and methods. A narrative review of 113 articles retrieved from PubMed and open-access sources (published up to May 2025) was conducted. The included literature covered neurobiological mechanisms (e.g., melanopsin, ipRGCs), circadian rhythm alterations, clinical trials on light therapy, and epidemiological studies linking screen time with depression. Emphasis was placed on studies investigating adolescent and adult populations, blue light wavelength sensitivity, and melatonin suppression.

Conclusions. Blue light influences human physiology through melanopsin-expressing retinal ganglion cells, affecting melatonin secretion and circadian rhythms. While daytime exposure supports mood and cognitive performance, evening exposure is associated with sleep disturbances and an increased risk of depressive symptoms. Bright light therapy shows promising efficacy in treating seasonal affective disorder and may support mood regulation in broader populations.

References

1. European Commission (Eurostat). Are Europeans glued to their screens? [https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20180507-1] (access: 10.08.2025).

2. Comparitech. Screen Time Statistics: Average Screen Time by Country. [https://www.comparitech.com/tv-streaming/screen-time-statistics/] (access: 10.08.2025).

3. Nastolatki 3.0 (edycja 2022): zachowania młodzieży online – główne wyniki. NASK; 2022. [https://www.nask.pl/magazyn/nastolatki-3-0-raport-z¬ogolnopolskiego-badania-uczniow-i-rodzicow] (access: 10.08.2025).

4. Polscy piętnastolatkowie w perspektywie międzynarodowej. Wyniki badania PISA 2022. IBE (PISA); 2022.

5. Cougnard-Gregoire A, Merle BMJ, Aslam T, et al. Blue light exposure: ocular hazards and prevention-a narrative review. Ophthalmol Ther. 2023;12(2):755-88.

6. Wahl S, Engelhardt M, Schaupp P, et l. The inner clock-Blue light sets the human rhythm. J Biophotonics. 2019;12(12):e201900102.

7. Nowicki Z, Grabowski K, Cubała WJ, et al. Prevalence of self-reported insomnia in general population of Poland. Psychiatr Pol. 2016;50(1):165-173.

8. Sen. Dużo śpij, długo żyj. Akademia NFZ; 2025.

9. Holding BC, Sundelin T, Schiller H, et al. Sleepiness, sleep duration, and human social activity: An investigation into bidirectionality using longitudinal time-use data. Proc Natl Acad Sci USA. 2020;117(35):21209-17.

10. Hafner M, Stepanek M, Taylor J, et al Why sleep matters-the economic costs of insufficient sleep: a cross-country comparative analysis. Rand Health Q. 2017;6(4):11.

11. Polacy mają problem ze snem – gospodarka traci na tym mld zł rocznie (2024-2025 update). UCE Research; 2024.

12. Silvani MI, Werder R, Perret C. The influence of blue light on sleep, performance and wellbeing in young adults: A systematic review. Front Physiol. 2022;13:943108.

13. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. APA. DSM-5. [https://dn790004.ca.archive.org/0/items/APA-DSM-5/DSM5.pdf ] (access:11.08 2025).

14. Arias-de la Torre J, Vilagut G, Ronaldson A, et al. Prevalence and variability of depressive symptoms in Europe. Lancet Public Health. 2023;8(11):889-98.

15. 7.2% of people in the EU suffer from chronic depression (statistic). European Commission/Eurostat; 2025.

16. Chang CE, Chen HC, Chen IM, et al. Evaluation of seasonal variations for the seasonal pattern assessment in mood disorder patients and healthy controls. BMC Psychiatry. 2025;25(1):458.

17. Burge MT, Lumapas RL, Lander AC, et al. Blue light influences negative thoughts of self. Sleep. 2025;48(7).

18. Provencio I, Jiang G, De Grip WJ, et al. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA. 1998;95(1):340-5.

19. Gooley JJ, Lu J, Chou TC, et al. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci. 2001;4(12):1165.

20. Hattar S, Liao HW, Takao M, et al. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065-70.

21. LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443-54.

22. Alkozei A, Dailey NS, Bajaj S, et al. Exposure to blue wavelength light is associated with increases in bidirectional amygdala-dlpfc connectivity at rest. Front Neurol. 2021;12:625443.

23. Ziólkowska N, Chmielewska-Krzesinska M, Vyniarska A, et al. Exposure to blue light reduces melanopsin expression in intrinsically photoreceptive retinal ganglion cells and damages the inner retina in rats. Invest Ophthalmol Vis Sci. 2022;63(1):26.

24. Krigel A, Berdugo M, Picard E, et al. Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. Neuroscience. 2016;339:296-307.

25. Bristow EA, Griffiths PG, Andrews RM, et al. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol. 2002;120(6):791-6.

26. Osborne NN, Li GY, Ji D, Mortiboys HJ, Jackson S. Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies. J Neurochem. 2008;105(5):2013-2028.

27. Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535(Pt 1):261-267.

28. Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405-6412.

29. St Hilaire MA, Ámundadóttir ML, Rahman SA, et al. The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration. Proc Natl Acad Sci USA. 2022;119(51):e2205301119.

30. Liu J, Clough SJ, Hutchinson AJ, et al. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361-83.

31. Maruani J, Geoffroy PA. Bright light as a personalized precision treatment of mood disorders. Front Psychiatry. 2019;10:85.

32. Vandewalle G, Balteau E, Phillips C, et al. Daytime light exposure dynamically enhances brain responses. Curr Biol. 2006;16(16):1616-21.

33. Impacts of Blue Light Exposure From Electronic Devices on Circadian Rhythm and Sleep Disruption in Adolescent and Young Adult Students Chronobiol Med. 2024;6(1):10-4.

34. Blazhkova A, Rehan D, Rzym K, et al. The Impact of sleep disorders on cardiovascular risk. J Educ Health Sport. 2025;81:59851.

35. Higuchi S, Motohashi Y, Liu Y, et al. Effects of VDT tasks with a bright display at night on melatonin, core temperature, heart rate, and sleepiness. J Appl Physiol. 2003;94(5):1773-6.

36. Chen YL, Gau SS. Sleep problems and internet addiction among children and adolescents: a longitudinal study. J Sleep Res. 2016;25(4):458-65.

37. Duffy JF, Czeisler CA. Effect of light on human circadian physiology. Sleep Med Clin. 2009;4(2):165-77.

38. Dworak M, Schierl T, Bruns T, Strüder HK. Impact of singular excessive computer game and television exposure on sleep patterns and memory performance of school-aged children. Pediatrics. 2007;120(5):978-85.

39. Cain N, Gradisar M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med. 2010;11(8):735-42.

40. Tao L, Jiang R, Zhang K, et al. Light therapy in non-seasonal depression: An update meta-analysis. Psychiatry Res. 2020;291:113247.

41. Killgore WDS. Lightening the mood: evidence for blue light exposure in the treatment of post-concussion depression. Expert Rev Neurother. 2020;20(11):1081-3.

42. Meesters Y, Dekker V, Schlangen LJ, et al. Low-intensity blue-enriched white light (750 lux) and standard bright light (10,000 lux) are equally effective in treating SAD. A randomized controlled study. BMC Psychiatry. 2011;11:17.

43. Alreshidi SM, Rayani AM. The correlation between night shift work schedules, sleep quality, and depression symptoms. Neuropsychiatr Dis Treat. 2023;19:1565-71.

44. Chellappa SL, Steiner R, Blattner P, et al. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS One. 2011;6(1):16429.

45. Heo JY, Kim K, Fava M, et al. Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross¬over, placebo-controlled comparison. J Psychiatr Res. 2017;87:61-70.

46. Ostrin LA, Abbott KS, Queener HM. Attenuation of short wavelengths alters sleep and the ipRGC pupil response. Ophthalmic Physiol Opt. 2017;37(4):440-50.

47. Shechter A, Kim EW, St-Onge MP, et al. Blocking nocturnal blue light for insomnia: A randomized controlled trial. J Psychiatr Res. 2018;96:196-202.

48. Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr. 2005;10(8):647-72.

49. Perlman CA, Johnson SL, Mellman TA. The prospective impact of sleep duration on depression and mania. Bipolar Disord. 2006;8(3):271-4.

50. H-S KIM, Choi K-S, Eom M, et al. Role of circadian types and depressive mood on sleep quality of shift work nurses. Korean J Psychopharmacol. 2011;2011:96-104

51. Peeters F, Nicolson NA, Berkhof J. Levels and variability of daily life cortisol secretion in major depression. Psychiatry Res. 2004;126(1):1-13.

52. Cervantes P, Gelber S, Kin FN, et al. Circadian secretion of cortisol in bipolar disorder. J Psychiatry Neurosci. 2001;26(5):411-6.

53. Claustrat B, Chazot G, Brun J, et al. A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatry. 1984;19(8):1215-28.

54. Øyane NM, Pallesen S, Moen BE, et al. Associations between night work and anxiety, depression, insomnia, sleepiness and fatigue in a sample of Norwegian nurses. PLoS One. 2013;8(8):e70228.

55. Foley DJ, Monjan AA, Brown SL, et al. Sleep complaints among elderly persons: an epidemiologic study of three communities. Sleep. 1995;18(6):425-32.

56. Almeida OP, Pfaff JJ. Sleep complaints among older general practice patients: association with depression. Br J Gen Pract. 2025;55(520):864-6.

57. Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017;127(2):437-46.

58. Adam EK, Quinn ME, Tavernier R, et al. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocr. 2017;83:25-41.

59. World Health Organization. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. Geneva: WHO; 2019.

60. World Health Organization. WHO Guidelines on physical activity and sedentary behaviour. Geneva: WHO; 2020.

61. Tips for reducing fatigue during long hours/shift work. CDC; 2025.

62. NHS. Fall asleep faster and sleep better – Every Mind Matters. [https://www.nhs.uk/every-mind-matters/mental-wellbeing-tips/how-to-fall-asleep-faster-and-sleep-better/] (access: 07.08.2025).

63. Where We Stand: Screen Time. HealthyChildren.org (AAP); 2025. [htt-ps://www.healthychildren.org/English/family-life/Media/Pages/Where-We-Stand-TV-Viewing-Time.aspx] (access: 07.08.2025).

64. Technology in education – A tool on whose terms? Key messages on restricting classroom smartphone use unless it supports learning. UNESCO GEM Report; 2023.

65. HSE (UK). Working safely with display screen equipment – work routine and breaks. [https://www.hse.gov.uk/msd/dse/work-routine.htm] (access: 07.08.2025).

66. Council Directive 90/270/EEC on minimum safety and health requirements for work with display screen equipment. EUR-Lex; 2025.

67. Light – Coping with night/evening shifts (manipulating light exposure for circadian adaptation). CDC/NIOSH; 2025. [https://www.cdc.gov/niosh/centers/fatigue.html] (access: 07.08.2025).

Downloads

Published

2025-09-19

How to Cite

Blazhkova, A., Czaja, M., Rehan, D., Rzym, K., Sitka, H. ., Solisch, S., Susłow, A., & Szczęsna, E. (2025). Blue light from screen and depression – A review. Polish Journal of Public Health, 135, 49-56. https://doi.org/10.12923/2083-4829/2025-0010