Insights into risk factors of the Metabolic Dysfunction-Associated Steatotic Liver Disease development among patients with schizophrenia

Authors

DOI:

https://doi.org/10.12923/2353-8627/2024-0021

Keywords:

metabolic syndrome, psychiatry, schizophrenia, risk factors, metabolic dysfunction-associated steatotic liver disease

Abstract

Introduction: The global burden of the Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) constitutes a significant clinical problem for healthcare systems worldwide. Apparently, a subgroup of patients diagnosed with schizophrenia appears to be particularly vulnerable to the MASLD development. However, exact risk factors in schizophrenia subjects remain unclear to date.

Material and methods: The article is a literature narrative review concentrating on the particular risk factors identification for MASLD development among patients with schizophrenia. Internet scientific bases were searched by three independent investigators throughout February-July 2024 for relevant original and review articles from 2000-2024 using different combinations of MeSH terms: “antipsychotics”, “diabetes”, “dietary habits”, “dyslipidemia”, “inflammation”, “intestinal permeability”, “insulin resistance”, “metabolic-associated fatty liver disease”, “metabolic dysfunction-associated steatotic liver disease”, “metabolic syndrome”, “non-alcoholic fatty liver disease”, “obesity”, “prevention”, “socioeconomic status”, “treatment”. Furthermore, a reference search was conducted to find other important manuscripts. Articles in other language than English were excluded from the search. The Scale for the Assessment of Narrative Review Articles was used to ensure the appropriate quality of this review.

Results: Socioeconomic conditions, improper dietary habits, lack of physical activity, smoking addiction issue, gut microbiota dysfunction or the use of antipsychotics may act as trigger points for the MASLD development among patients with schizophrenia. 

Conclusions: The identification of particular risk factors of MASLD development among schizophrenia subjects may help to establish a multidisciplinary healthcare programme primarily aimed at MASLD and its complications prevention, early detection and proper treatment.

References

1. Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023; 78(6): 1966-1986.

2. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022; 7(9): 851-861.

3. Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J Obes Metab Syndr. 2023; 32(3): 197-213.

4. Grant RK, Brindle WM, Donnelly MC, McConville PM, Stroud TG, Bandieri L, et al. Gastrointestinal and liver disease in patients with schizophrenia: A narrative review. World J Gastroenterol. 2022; 28(38): 5515-5529.

5. Baethge C, Goldbeck-Wood S, Mertens S. SANRA-a scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019; 4: 5.

6. Cho J, Lee I, Park DH, Kwak HB, Min K. Relationships between Socioeconomic Status, Handgrip Strength, and Non-Alcoholic Fatty Liver Disease in Middle-Aged Adults. Int J Environ Res Public Health. 2021; 18(4): 1892.

7. Hakulinen C, Webb RT, Pedersen CB, Agerbo E, Mok PLH. Association Between Parental Income During Childhood and Risk of Schizophrenia Later in Life. JAMA Psychiatry. 2020; 77(1): 17-24.

8. Xu Q, Cai M, Ji Y, Ma J, Liu J, Zhao Q, et al. Identifying the mediating role of socioeconomic status on the relationship between schizophrenia and major depressive disorder: a Mendelian randomisation analysis. Schizophrenia (Heidelb). 2023; 9(1): 53.

9. Tutunchi H, Saghafi-Asl M, Ebrahimi-Mameghani M, Ostadrahimi A. Food Insecurity and Lipid Profile Abnormalities Are Associated with an Increased Risk of Nonalcoholic Fatty Liver Disease (NAFLD): A Case-Control Study. Ecol Food Nutr. 2021; 60(4): 508-524.

10. Golovaty I, Tien PC, Price JC, Sheira L, Seligman H, Weiser SD. Food Insecurity May Be an Independent Risk Factor Associated with Nonalcoholic Fatty Liver Disease among Low-Income Adults in the United States. J Nutr. 2020; 150(1): 91-98.

11. Adamowicz K, Kucharska-Mazur J. Dietary Behaviors and Metabolic Syndrome in Schizophrenia Patients. J Clin Med. 2020; 9(2): 537.

12. Smith J, Stevens H, Lake AA, Teasdale S, Giles EL. Food insecurity in adults with severe mental illness: A systematic review with meta-analysis. J Psychiatr Ment Health Nurs. 2024; 31(2): 133-151.

13. Lawrence D, Kisely S. Inequalities in healthcare provision for people with severe mental illness. J Psychopharmacol. 2010; 24(4 Suppl): 61-68.

14. Peritogiannis V, Ninou A, Samakouri M. Mortality in Schizophrenia-Spectrum Disorders: Recent Advances in Understanding and Management. Healthcare (Basel). 2022; 10(12): 2366.

15. Sadeghianpour Z, Cheraghian B, Farshchi HR, Asadi-Lari M. Nonalcoholic fatty liver disease and socioeconomic determinants in an Iranian cohort study. BMC Gastroenterol. 2023; 23(1): 350.

16. Marchesini G, Brizi M, Blanchi G, Tomassetti S, Bugianesi E, Lenzi M, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001; 50(8): 1844-1850.

17. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015; 62(1 Suppl): S47-S64.

18. Dongiovanni P, Valenti L. A Nutrigenomic Approach to Non-Alcoholic Fatty Liver Disease. Int J Mol Sci. 2017; 18(7): 1534.

19. Chaturvedi S, Tripathi D, Vikram NK, Madhusudhan KS, Pandey RM, Bhatia N. Dietary pattern associated with non-alcoholic fatty liver disease (NAFLD) in non-diabetic adult patients: A case control study. Clin Nutr ESPEN. 2024; 60: 247-253.

20. Paik JM, Mir S, Alqahtani SA, Younossi Y, Ong JP, Younossi ZM. Dietary Risks for Liver Mortality in NAFLD: Global Burden of Disease Data. Hepatol Commun. 2022; 6(1): 90-100.

21. Dipasquale S, Pariante CM, Dazzan P, Aguglia E, McGuire P, Mondelli V. The dietary pattern of patients with schizophrenia: a systematic review. J Psychiatr Res. 2013; 47(2): 197-207.

22. Jakobsen AS, Speyer H, Nørgaard HCB, Karlsen M, Hjorthøj C, Krogh J, et al. Dietary patterns and physical activity in people with schizophrenia and increased waist circumference. Schizophr Res. 2018; 199: 109-115.

23. Firth J, Stubbs B, Teasdale SB, Ward PB, Veronese N, Shivappa N, et al. Diet as a hot topic in psychiatry: a population-scale study of nutritional intake and inflammatory potential in severe mental illness. World Psychiatry. 2018; 17(3): 365-367.

24. Stefańska E, Wendołowicz A, Lech M, Konarzewska B, Zapolska J, Waszkiewicz N et al. Does the usual dietary intake of schizophrenia patients require supplementation with vitamins and minerals?. Psychiatria Polska. 2019; 53(3): 599-612.

25. Jahrami H, Faris MA, Ghazzawi HA, Saif Z, Habib L, Shivappa N, et al. Increased Dietary Inflammatory Index Is Associated with Schizophrenia: Results of a Case-Control Study from Bahrain. Nutrients. 2019; 11(8): 1867.

26. Cha HY, Yang SJ, Kim SW. Higher Dietary Inflammation in Patients with Schizophrenia: A Case-Control Study in Korea. Nutrients. 2021; 13(6): 2033.

27. Seeman MV. Women with Schizophrenia Have Difficulty Maintaining Healthy Diets for Themselves and Their Children: A Narrative Review. Behav Sci (Basel). 2023; 13(12): 967.

28. Misiak B, Bartoli F, Stramecki F, Samochowiec J, Lis M, Kasznia J, et al. Appetite regulating hormones in first-episode psychosis: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2019; 102: 362-370.

29. Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr. 2022; 8: 815456.

30. Benarroch L, Kowalchuk C, Wilson V, Teo C, Guenette M, Chintoh A, et al. Atypical antipsychotics and effects on feeding: from mice to men. Psychopharmacology (Berl). 2016; 233(14): 2629-2653.

31. Romanova IV, Derkach KV, Mikhrina AL, Sukhov IB, Mikhailova EV, Shpakov AO. The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem Res. 2018; 43(4): 821-837.

32. Rezitis J, Herzog H, Ip CK. Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry. 2022; 113: 110449.

33. Wan XQ, Zeng F, Huang XF, Yang HQ, Wang L, Shi YC, et al. Risperidone stimulates food intake and induces body weight gain via the hypothalamic arcuate nucleus 5-HT2c receptor-NPY pathway. CNS Neurosci Ther. 2020; 26(5): 558-566.

34. Bonn M, Schmitt A, Lesch KP, Van Bockstaele EJ, Asan E. Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Brain Struct Funct. 2013; 218(2): 421-435.

35. Deng C, Weston-Green K, Huang XF. The role of histaminergic H1 and H3 receptors in food intake: a mechanism for atypical antipsychotic-induced weight gain?. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34(1): 1-4.

36. Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. Histaminergic regulation of food intake. Front Endocrinol (Lausanne). 2023; 14: 1202089.

37. Zendehdel M, Lankarani Mohajer L, Hassanpour S. Central muscarinic receptor subtypes (M1 and M3) involved in carbacolinduced hypophagia in neonatal broiler chicken. Int J Neurosci. 2020; 130(2): 204-211.

38. Mlambo R, Liu J, Wang Q, Tan S, Chen C. Receptors Involved in Mental Disorders and the Use of Clozapine, Chlorpromazine, Olanzapine, and Aripiprazole to Treat Mental Disorders. Pharmaceuticals (Basel). 2023; 16(4): 603.

39. Han M, Lian J, Su Y, Deng C. Cevimeline co-treatment attenuates olanzapine-induced metabolic disorders via modulating hepatic M3 muscarinic receptor: AMPKα signalling pathway in female rats. J Psychopharmacol. 2022; 36(2): 202-213.

40. Lebois EP, Thorn C, Edgerton JR, Popiolek M, Xi S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology. 2018; 136(Pt C): 362-373.

41. Jeong JH, Lee DK, Jo YH. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol Metab. 2017; 6(3): 306-312.

42. Zou S, Kumar U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int J Mol Sci. 2018; 19(3): 833.

43. Lian J, Deng C. The effects of antipsychotics on the density of cannabinoid receptors in selected brain regions of male and female adolescent juvenile rats. Psychiatry Res. 2018; 266: 317-322.

44. Weston-Green K, Huang XF, Han M, Deng C. The effects of antipsychotics on the density of cannabinoid receptors in the dorsal vagal complex of rats: implications for olanzapineinduced weight gain. Int J Neuropsychopharmacol. 2008; 11(6): 827-835.

45. Zhao S, Lin Q, Xiong W, et al. Hyperleptinemia contributes to antipsychotic drug-associated obesity and metabolic disorders. Sci Transl Med. 2023; 15(723): eade8460.

46. Wysokiński A, Dietrich-Muszalska A. Leptin resistance in patients with chronic schizophrenia. Psychiatr i Psychol Klin - J Psychiatry Clin Psychol. 2019; 19(2): 143-148.

47. Mendoza-Herrera K, Florio AA, Moore M, Marrero A, Tamez M, Bhupathiraju SN, et al. The Leptin System and Diet: A Mini Review of the Current Evidence. Front Endocrinol (Lausanne). 2021; 12: 749050.

48. Chen CY, Goh KK, Chen CH, Lu ML. The Role of Adiponectin in the Pathogenesis of Metabolic Disturbances in Patients With Schizophrenia. Front Psychiatry. 2021; 11: 605124.

49. Zhang Q, Deng C, Huang XF. The role of ghrelin signalling in second-generation antipsychotic-induced weight gain. Psychoneuroendocrinology. 2013; 38(11): 2423-2438.

50. Yates NJ. Schizophrenia: the role of sleep and circadian rhythms in regulating dopamine and psychosis. Rev Neurosci. 2016; 27(7): 669-687.

51. Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig. 2020; 17(8): 725-743.

52. Suttajit S, Pilakanta S. Prevalence of metabolic syndrome and its association with depression in patients with schizophrenia. Neuropsychiatr Dis Treat. 2013; 9: 941-946.

53. Balcioglu SSK, Balcioglu YH, Devrim Balaban O. The association between chronotype and sleep quality, and cardiometabolic markers in patients with schizophrenia. Chronobiol Int. 2022; 39(1): 77-88.

54. Kim DH, Kim B, Han K, Kim SW. The relationship between metabolic syndrome and obstructive sleep apnea syndrome: a nationwide population-based study. Sci Rep. 2021; 11(1): 8751.

55. Ng CM, Kaur S. Environmental light exposure and mealtime regularity: Implications for human health. Chronobiol Int. 2022; 39(9): 1183-1194.

56. Merino D, Gérard AO, Van Obberghen EK, Ben Othman N, Ettore E, Giordana B, et al. Medications as a Trigger of Sleep-Related Eating Disorder: A Disproportionality Analysis. J Clin Med. 2022; 11(13): 3890.

57. Stubbs B, Firth J, Berry A, Schuch FB, Rosenbaum S, Gaughran F, et al. How much physical activity do people with schizophrenia engage in? A systematic review, comparative meta-analysis and meta-regression. Schizophr Res. 2016; 176(2-3): 431-440.

58. Andersen E, Holmen TL, Egeland J, Martinsen EW, Bigseth TT, Bang-Kittilsen G, et al. Physical activity pattern and cardiorespiratory fitness in individuals with schizophrenia compared with a population-based sample. Schizophr Res. 2018; 201: 98-104.

59. Lee SH, Kim G, Kim CE, Ryu S. Physical Activity of Patients with Chronic Schizophrenia and Related Clinical Factors. Psychiatry Investig. 2018; 15(8): 811-817.

60. Vancampfort D, De Hert M, Stubbs B, Ward PB, Rosenbaum S, Soundy A, et al. Negative symptoms are associated with lower autonomous motivation towards physical activity in people with schizophrenia. Compr Psychiatry. 2015; 56: 128-132.

61. Vancampfort D, De Hert M, Vansteenkiste M, De Herdt A, Scheewe TW, Soundy A, et al. The importance of self-determined motivation towards physical activity in patients with schizophrenia. Psychiatry Res. 2013; 210(3): 812-818.

62. Bosy-Westphal A, Hägele FA, Müller MJ. What Is the Impact of Energy Expenditure on Energy Intake?. Nutrients. 2021; 13(10): 3508.

63. Krüger K, Tirekoglou P, Weyh C. Immunological mechanisms of exercise therapy in dyslipidemia. Front Physiol. 2022; 13: 903713.

64. Linder S, Abu-Omar K, Geidl W, Messing S, Sarshar M, Reimers AK, et al. Physical inactivity in healthy, obese, and diabetic adults in Germany: An analysis of related socio-demographic variables. PLoS One. 2021; 16(2): e0246634.

65. Perrone MA, Feola A, Pieri M, Donatucci B, Salimei C, Lombardo M, et al. The Effects of Reduced Physical Activity on the Lipid Profile in Patients with High Cardiovascular Risk during COVID-19 Lockdown. Int J Environ Res Public Health. 2021; 18(16): 8858.

66. Denche-Zamorano Á, Mendoza-Muñoz DM, Barrios-Fernandez S, Perez-Corraliza C, Franco-García JM, Carlos-Vivas J, et al. Physical Activity Reduces the Risk of Developing Diabetes and Diabetes Medication Use. Healthcare (Basel). 2022; 10(12): 2479.

67. Gamage AU, Seneviratne RA. Physical inactivity, and its association with hypertension among employees in the district of Colombo. BMC Public Health. 2021; 21(1): 2186.

68. Stine JG, Soriano C, Schreibman I, Rivas G, Hummer B, Yoo E, et al. Breaking Down Barriers to Physical Activity in Patients with Nonalcoholic Fatty Liver Disease. Dig Dis Sci. 2021; 66(10): 3604-3611.

69. Zhang X, Chen K, Yin S, Qian M, Liu C. Association of leisure sedentary behavior and physical activity with the risk of nonalcoholic fatty liver disease: a two-sample Mendelian randomization study. Front Nutr. 2023; 10: 1158810.

70. Saqib ZA, Dai J, Menhas R, Mahmood S, Karim M, Sang X, et al. Physical Activity is a Medicine for Non-Communicable Diseases: A Survey Study Regarding the Perception of Physical Activity Impact on Health Wellbeing. Risk Manag Healthc Policy. 2020; 13: 2949-2962.

71. Barrón-Cabrera E, Soria-Rodríguez R, Amador-Lara F, Martínez-López E. Physical Activity Protocols in Non-Alcoholic Fatty Liver Disease Management: A Systematic Review of Randomized Clinical Trials and Animal Models. Healthcare (Basel). 2023; 11(14): 1992.

72. Akhavan Rezayat A, Dadgar Moghadam M, Ghasemi Nour M, et al. Association between smoking and non-alcoholic fatty liver disease: A systematic review and meta-analysis. SAGE Open Med. 2018; 6: 2050312117745223.

73. Ou H, Fu Y, Liao W, Zheng C, Wu X. Association between Smoking and Liver Fibrosis among Patients with Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol. 2019; 2019: 6028952.

74. Deng X, Wang P, Yuan H. Epidemiology, risk factors across the spectrum of age-related metabolic diseases. J Trace Elem Med Biol. 2020; 61: 126497.

75. Śliwińska-Mossoń M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diab Vasc Dis Res. 2017; 14(4): 265-276.

76. Song W, Lin GN, Yu S, Zhao M. Genome-wide identification of the shared genetic basis of cannabis and cigarette smoking and schizophrenia implicates NCAM1 and neuronal abnormality. Psychiatry Res. 2022; 310: 114453.

77. Rødevand L, Rahman Z, Hindley GFL, Smeland OB, Frei O, Tekin TF, et al. Characterizing the Shared Genetic Underpinnings of Schizophrenia and Cardiovascular Disease Risk Factors. Am J Psychiatry. 2023; 180(11): 815-826.

78. van der Plas A, Antunes M, Pouly S, de La Bourdonnaye G, Hankins M, Heremans A. Meta-analysis of the effects of smoking and smoking cessation on triglyceride levels. Toxicol Rep. 2023; 10: 367-375.

79. Moradinazar M, Pasdar Y, Najafi F, Shahsavari S, Shakiba E, Hamzeh B, et al. Association between dyslipidemia and blood lipids concentration with smoking habits in the Kurdish population of Iran. BMC Public Health. 2020; 20(1): 673.

80. Kumar N, Shaikh SN, Iqbal A, Memon FR, Hussain T, Rafique S. Correlation between Smoking and Dyslipidemia in ElderlyMales: An Analytical Cross-Sectional Study. Pakistan J Med Heal Sci. 2022; 16(7): 745–747.

81. Hussein Ali E, Hussein Abod Al-Khafaji K, Hassan Abood A. Effect of Smoking on Low-Density Lipoproteins Level in Human. Arch Razi Inst. 2022; 77(5): 1971-1974.

82. Wagai GA, Jeelani U, Beg MA, Romshoo GJ. Relationship between hypertension and smoking: A preliminary study in South Kashmiri population of J&K. J Family Med Prim Care. 2023; 12(5): 958-961.

83. Drummond CA, Brewster PS, He W, Ren K, Xie Y, Tuttle KR, et al. Cigarette smoking and cardio-renal events in patients with atherosclerotic renal artery stenosis. PLoS One. 2017; 12(3): e0173562.

84. Doonan RJ, Hausvater A, Scallan C, Mikhailidis DP, Pilote L, Daskalopoulou SS. The effect of smoking on arterial stiffness. Hypertens Res. 2010; 33(5): 398-410.

85. Yuan H, Shyy JY, Martins-Green M. Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1. J Hepatol. 2009; 51(3): 535-547.

86. Mumtaz H, Hameed M, Sangah AB, Zubair A, Hasan M. Association between smoking and non-alcoholic fatty liver disease in Southeast Asia. Front Public Health. 2022; 10: 1008878.

87. Soeda J, Morgan M, McKee C, Mouralidarane A, Lin C, Roskams T, et al. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells. Biochem Biophys Res Commun. 2012; 417(1): 17-22.

88. Ahmadkhaniha R, Yousefian F, Rastkari N. Impact of smoking on oxidant/antioxidant status and oxidative stress index levels in serum of the university students. J Environ Health Sci Eng. 2021; 19(1): 1043-1046.

89. Elisia I, Lam V, Cho B, Hay M, Li MY, Yeung M, et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep. 2020; 10(1): 19480.

90. Fouda S, Khan A, Chan SMH, Mahzari A, Zhou X, Qin CX, et al. Exposure to cigarette smoke precipitates simple hepatosteatosis to NASH in high-fat diet fed mice by inducing oxidative stress. Clin Sci (Lond). 2021; 135(17): 2103-2119.

91. Dickerson F, Schroeder J, Katsafanas E, Khushalani S, Origoni AE, Savage C, et al. Cigarette Smoking by Patients With Serious Mental Illness, 1999-2016: An Increasing Disparity. Psychiatr Serv. 2018; 69(2): 147-153.

92. Ding JB, Hu K. Cigarette Smoking and Schizophrenia: Etiology, Clinical, Pharmacological, and Treatment Implications. Schizophr Res Treatment. 2021; 2021: 7698030.

93. Ward HB, Lawson MT, Addington J, Bearden CE, Cadenhead KS, Cannon TD, et al. Tobacco use and psychosis risk in persons at clinical high risk. Early Interv Psychiatry. 2019; 13(5): 1173-1181.

94. Scott JG, Matuschka L, Niemelä S, Miettunen J, Emmerson B, Mustonen A. Evidence of a Causal Relationship Between Smoking Tobacco and Schizophrenia Spectrum Disorders. Front Psychiatry. 2018; 9: 607.

95. Kendler KS, Lönn SL, Sundquist J, Sundquist K. Smoking and schizophrenia in population cohorts of Swedish women and men: a prospective co-relative control study. Am J Psychiatry. 2015; 172(11): 1092-1100.

96. Maideen NMP. Tobacco smoking and its drug interactions with comedications involving CYP and UGT enzymes and nicotine. World J Pharmacol. 2019; 8(2): 14-25.

97. Wysokiński A. Możliwości leczenia schizofrenii lekoopornej z objawami pozytywnymi. Psychiatria po Dyplomie. 2022; 13(2): 28-32.

98. Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, et al. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals (Basel). 2021; 14(3): 238.

99. Alonso Y, Miralles C, Algora MJ, Valiente-Pallejà A, Sánchez-Gistau V, Muntané G, et al. Risk factors for metabolic syndrome in individuals with recent-onset psychosis at disease onset and after 1-year follow-up. Sci Rep. 2022; 12(1): 11386.

100. Wichniak A, Dudek D, Heitzman J, Kapłon-Cieślicka A, Mamcarz A, Samochowiec J, et al. Metabolic risk reduction in patients with schizophrenia treated with antipsychotics: recommendations of the Polish Psychiatric Association. Redukcja ryzyka metabolicznego u chorych na schizofrenię przyjmujących leki przeciwpsychotyczne – zalecenia Polskiego Towarzystwa Psychiatrycznego. Psychiatr Pol. 2019; 53(6): 1191-1218.

101. Li Z, Qing Y, Cui G, Li M, Liu T, Zeng Y, et al. Shotgun metagenomics reveals abnormal short-chain fatty acid-producing bacteria and glucose and lipid metabolism of the gut microbiota in patients with schizophrenia. Schizophr Res. 2023; 255: 59-66.

102. Li Z, Tao X, Wang D, Pu J, Liu Y, Gui S, et al. Alterations of the gut microbiota in patients with schizophrenia. Front Psychiatry. 2024; 15: 1366311.

103. Szeligowski T, Yun AL, Lennox BR, Burnet PWJ. The Gut Microbiome and Schizophrenia: The Current State of the Field and Clinical Applications. Front Psychiatry. 2020; 11: 156.

104. Maczewsky J, Kaiser J, Gresch A, Gerst F, Düfer M, Krippeit-Drews P, et al. GR5 Activation Promotes Stimulus-Secretion Coupling of Pancreatic β-Cells via a PKA-Dependent Pathway. Diabetes. 2019; 68(2): 324-336.

105. Han X, Cui ZY, Song J, Piao HQ, Lian LH, Hou LS, et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chem Biol Interact. 2019; 311: 108794.

106. Xiong RG, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, et al. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods. 2022; 11(18): 2863.

107. Park JH, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS One. 2016; 11(5): e0156334.

108. Zhang JM, Sun YS, Zhao LQ, Chen TT, Fan MN, Jiao HC, et al. SCFAs-Induced GLP-1 Secretion Links the Regulation of Gut Microbiome on Hepatic Lipogenesis in Chickens. Front Microbiol. 2019; 10: 2176.

109. Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH, et al. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 2022; 12: 997018.

110. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015; 39(3): 424-429.

111. Astrup A. Reflections on the discovery GLP-1 as a satiety hormone: Implications for obesity therapy and future directions. Eur J Clin Nutr. 2024; 78(7): 551-556.

112. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci. 2003;994:162-168.

113. Mansuy-Aubert V, Ravussin Y. Short chain fatty acids: the messengers from down below. Front Neurosci. 2023; 17: 1197759.

114. Iatcu CO, Steen A, Covasa M. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients. 2021; 14(1): 166.

115. Yang Z, Wang Q, Liu Y, Wang L, Ge Z, Li Z, et al. Gut microbiota and hypertension: association, mechanisms and treatment. Clin Exp Hypertens. 2023; 45(1): 2195135.

116. Lei L, Zhao N, Zhang L, Chen J, Liu X, Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne). 2022; 13: 950826.

117. Kasahara K, Rey FE. The emerging role of gut microbial metabolism on cardiovascular disease. Curr Opin Microbiol. 2019; 50: 64-70.

118. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472(7341): 57-63.

119. Sanchez-Gimenez R, Ahmed-Khodja W, Molina Y, Peiró OM, Bonet G, Carrasquer A, et al. Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies. Nutrients. 2022; 14(13): 2654.

120. de la O V, Zazpe I, Ruiz-Canela M. Effect of branched-chain amino acid supplementation, dietary intake and circulating levels in cardiometabolic diseases: an updated review. Curr Opin Clin Nutr Metab Care. 2020; 23(1): 35-50.

121. White PJ, Newgard CB. Branched-chain amino acids in disease. Science. 2019; 363(6427): 582-583.

122. Lano G, Burtey S, Sallée M. Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins (Basel). 2020; 12(4): 229.

123. Gokulakrishnan K, Nikhil J, VS S, Holla B, Thirumoorthy C, Sandhya N, et al. Altered Intestinal Permeability Biomarkers in Schizophrenia: A Possible Link with Subclinical Inflammation. Ann Neurosci. 2022; 29(2-3): 151-158.

124. Ishida I, Ogura J, Aizawa E, Ota M, Hidese S, Yomogida Y, et al. Gut permeability and its clinical relevance in schizophrenia. Neuropsychopharmacol Rep. 2022; 42(1): 70-76.

125. Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation?. Inflamm Intest Dis. 2016; 1(3): 135-145.

126. Kessoku T, Kobayashi T, Tanaka K, Yamamoto A, Takahashi K, Iwaki M, et al. The Role of Leaky Gut in Nonalcoholic Fatty Liver Disease: A Novel Therapeutic Target. Int J Mol Sci. 2021; 22(15): 8161.

127. Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci. 2022; 16: 1042442.

128. Rogalski JK, Subdys A, Gawlik-Kotelnicka OE. The development of the Metabolic-associated Fatty Liver Disease during pharmacotherapy of mental disorders - a review. Curr Probl Psychiatry. 2022; 23(3): 128-143.

129. Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry. 2020; 7(1): 64-77.

130. Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, et al. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals (Basel). 2021; 14(3) :238.

131. Smith GC, Vickers MH, Cognard E, Shepherd PR. Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: implications for glucose metabolism and food choice behaviour. Schizophr Res. 2009; 115(1): 30-40.

132. Babkin P, George Thompson AM, Iancu CV, Walters DE, Choe JY. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H(+) symporter. FEBS Open Bio. 2015; 5: 335-340.

133. Cai HL, Tan QY, Jiang P, Dang RL, Xue Y, Tang MM, et al. A potential mechanism underlying atypical antipsychotics-induced lipid disturbances. Transl Psychiatry. 2015; 5(10): e661.

134. Sarsenbayeva A, Marques-Santos CM, Thombare K, Di Nunzio G, Almby KE, Lundqvist M, et al. Effects of second-generation antipsychotics on human subcutaneous adipose tissue metabolism. Psychoneuroendocrinology. 2019; 110: 104445.

135. Matsuo T, Omori Y, Tomita T, Sadzuka Y. Olanzapine enhances adipogenesis and suppresses lipolysis in 3T3L1 adipocytes under lowglucose and weak differentiation/maturation conditions. Exp Ther Med. 2022; 24(5): 647.

136. Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol. 2021; 95(3): 767-789.

137. Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci. 2022; 23(13): 7280.

138. May M, Barlow D, Ibrahim R, Houseknecht KL. Mechanisms Underlying Antipsychotic-Induced NAFLD and Iron Dysregulation: A Multi-Omic Approach. Biomedicines. 2022; 10(6): 1225.

139. Cheng Z, Chu H, Zhu Q, Yang L. Ferroptosis in non-alcoholic liver disease: Molecular mechanisms and therapeutic implications. Front Nutr. 2023; 10: 1090338.

Downloads

Published

2025-01-09